- #1
etotheipi
Given functions ##f=f(r)## and ##h = h(r)##, author has defined a tetrad$$(e_0)_a = f^{1/2} (dt)_a, \quad (e_1)_a = h^{1/2}(dr)_a, \quad (e_2)_a = r(d\theta)_a, \quad (e_3)_a = r\sin{\theta} (d\phi)_a$$where ##(t,r,\theta,\phi)## are coordinates. It is required to work out ##\partial_{[a} (e_\mu)_{b]}## for each of these, with ##\partial_a## the normal derivative operator associated with these coordinates. So e.g. for the first one I would have thought$$
\begin{align*}
\partial_{[a} (e_0)_{b]} = \partial_{[a} f^{1/2} (dt)_{b]} = \frac{1}{2}f^{-1/2} (\partial_{[a} f) (dt)_{b]} + f^{1/2} \partial_{[a} (dt)_{b]} \ \ \ (1)
\end{align*}
$$I figured that ##\partial_{\mu} f = \delta_{\mu r} f'##, i.e. zero for ##\mu = t,\theta,\phi## and ##f'## for ##\mu = r##. But solution is$$\partial_{[a} (e_0)_{b]} = \frac{1}{2} f^{-1/2} f' (dr)_{[a} (dt)_{b]} \ \ \ (2)$$How to get from ##(1)## to ##(2)##? Thanks
\begin{align*}
\partial_{[a} (e_0)_{b]} = \partial_{[a} f^{1/2} (dt)_{b]} = \frac{1}{2}f^{-1/2} (\partial_{[a} f) (dt)_{b]} + f^{1/2} \partial_{[a} (dt)_{b]} \ \ \ (1)
\end{align*}
$$I figured that ##\partial_{\mu} f = \delta_{\mu r} f'##, i.e. zero for ##\mu = t,\theta,\phi## and ##f'## for ##\mu = r##. But solution is$$\partial_{[a} (e_0)_{b]} = \frac{1}{2} f^{-1/2} f' (dr)_{[a} (dt)_{b]} \ \ \ (2)$$How to get from ##(1)## to ##(2)##? Thanks