- #1
azatkgz
- 186
- 0
It seems to that i went wrong way.
[tex]\int \frac{arcsin(e^x)dx}{e^x}[/tex]
[tex]=-\frac{arcsin(e^x)}{e^x}+\int \frac{dx}{\sqrt{1-e^{2x}}}[/tex]
[tex]\int \frac{dx}{\sqrt{1-e^{2x}}}=\frac{x}{\sqrt{1-e^{2x}}}+\int \frac{xe^{2x}dx}{(1-e^{2x})^{\frac{3}{2}}}[/tex]
Homework Statement
[tex]\int \frac{arcsin(e^x)dx}{e^x}[/tex]
The Attempt at a Solution
[tex]=-\frac{arcsin(e^x)}{e^x}+\int \frac{dx}{\sqrt{1-e^{2x}}}[/tex]
[tex]\int \frac{dx}{\sqrt{1-e^{2x}}}=\frac{x}{\sqrt{1-e^{2x}}}+\int \frac{xe^{2x}dx}{(1-e^{2x})^{\frac{3}{2}}}[/tex]
Last edited: