- #1
Hill
- 708
- 564
- TL;DR Summary
- In this derivation of energy-momentum conservation, on what step the symmetry of space-time translation was used?
Here are steps.
Consider shift of field ##\phi## by a constant 4-vector ##\xi##:
(1) ##\phi(x) \rightarrow \phi(x+\xi)=\phi(x)+\xi^{\nu} \partial_{\nu} \phi(x) + ... ##
The infinitesimal transformation,
(2) ##\frac {\delta \phi} {\delta \xi^{\nu}} = \partial_{\nu} \phi##
and
(3) ##\frac {\delta \mathcal L} {\delta \xi^{\nu}} = \partial_{\nu} \mathcal L##
Using the E-L equations, the variation of Lagrangian is
(4) ##\frac {\delta \mathcal L[\phi, \partial_{\mu} \phi]} {\delta \xi^{\nu}}=\partial_{\mu} (\frac {\partial \mathcal L}{\partial (\partial_{\mu} \phi)} \frac {\delta \phi} {\delta \xi^{\nu}})##
Using (2) and (3),
(5) ##\partial_{\nu} \mathcal L =\partial_{\mu} (\frac {\partial \mathcal L}{\partial (\partial_{\mu} \phi)} \partial_{\nu} \phi)##
or equivalently
(6) ##\partial_{\mu} (\frac {\partial \mathcal L}{\partial (\partial_{\mu} \phi)} \partial_{\nu} \phi - g_{\mu \nu} \mathcal L) = 0##
The conclusion is,
"The four symmetries have produced four Noether currents, one for each ##\nu##:
##\mathcal T_{\mu \nu} = \frac {\partial \mathcal L}{\partial (\partial_{\mu} \phi)} \partial_{\nu} \phi - g_{\mu \nu} \mathcal L##
all of which are conserved: ##\partial_{\mu} \mathcal T_{\mu \nu}=0##."
My question: where in this derivation the assumption was used that the transformation is a symmetry?
Consider shift of field ##\phi## by a constant 4-vector ##\xi##:
(1) ##\phi(x) \rightarrow \phi(x+\xi)=\phi(x)+\xi^{\nu} \partial_{\nu} \phi(x) + ... ##
The infinitesimal transformation,
(2) ##\frac {\delta \phi} {\delta \xi^{\nu}} = \partial_{\nu} \phi##
and
(3) ##\frac {\delta \mathcal L} {\delta \xi^{\nu}} = \partial_{\nu} \mathcal L##
Using the E-L equations, the variation of Lagrangian is
(4) ##\frac {\delta \mathcal L[\phi, \partial_{\mu} \phi]} {\delta \xi^{\nu}}=\partial_{\mu} (\frac {\partial \mathcal L}{\partial (\partial_{\mu} \phi)} \frac {\delta \phi} {\delta \xi^{\nu}})##
Using (2) and (3),
(5) ##\partial_{\nu} \mathcal L =\partial_{\mu} (\frac {\partial \mathcal L}{\partial (\partial_{\mu} \phi)} \partial_{\nu} \phi)##
or equivalently
(6) ##\partial_{\mu} (\frac {\partial \mathcal L}{\partial (\partial_{\mu} \phi)} \partial_{\nu} \phi - g_{\mu \nu} \mathcal L) = 0##
The conclusion is,
"The four symmetries have produced four Noether currents, one for each ##\nu##:
##\mathcal T_{\mu \nu} = \frac {\partial \mathcal L}{\partial (\partial_{\mu} \phi)} \partial_{\nu} \phi - g_{\mu \nu} \mathcal L##
all of which are conserved: ##\partial_{\mu} \mathcal T_{\mu \nu}=0##."
My question: where in this derivation the assumption was used that the transformation is a symmetry?
Last edited: