How Were Sine and Cosine Discovered?

In summary, Sine and Cosine were discovered through the study of triangles and trigonometric functions. These functions were first introduced by ancient Greek mathematicians, and were later developed and refined by Islamic mathematicians. The discovery of these functions revolutionized the way we understand and solve mathematical equations, and they continue to have a significant impact in fields such as engineering, physics, and astronomy.
  • #1
eax
61
0
There is a symbol that looks like this http://mathworld.wolfram.com/nimg268.gif

The symbol is like a line that is curved on both ends.

Thanks in advance!
 
Last edited by a moderator:
Mathematics news on Phys.org
  • #3
The natural logarithm of x is equal to the integral of (1/t)dt from 1 to x.
 
  • #4
I don't think I'm going the right way with my problem. Anyway out of interest I want to know how to calculate the sin(x) without using the function(or cos, tan etc.) on the calculator.
 
  • #5
On the unit circle, there are places where sin(x) is defined exactly. Other than that, you could also use linear approximation, but that would require the derivative, and thus cosine.

A more precise way would be:

http://mathforum.org/library/drmath/view/64635.html
 
  • #6
Use a Taylors series.

[tex] \sin (x) = x - \frac {x^3} {3!} + \frac {x^5} {5 !}- \frac {x^7} {7!}+ ... [/tex]

The more terms you use the more accurate the result. This is the math behind small angle approximations. For small angles sin(x) ~ x.


x must be in radians.

Edited per Mathwonks correction.
OPPS!
 
Last edited:
  • #7
I am told that calculators use the "Cordic" algorithm for things like sin, cos, log, exp.

Apparently it is faster than the Taylor's series. Here is a link to a website about it:
http://www.dspguru.com/info/faqs/cordic.htm

My father used to call the integral sign a "seahorse"!
 
  • #8
What exactly is the difference between an equal sign and an equivalence sign (as used in first post)?
 
  • #9
Icebreaker said:
What exactly is the difference between an equal sign and an equivalence sign (as used in first post)?


In the case of the OP's image, it means that the natural log is DEFINED by that integral. This is where ln, and e, and all come from, integrating the hyperbolic function 1/x.
 
  • #10
in Integra's post there are sign errors, i.e. the signs should alternate, so the series given will not compute sin(x) at all.
 
  • #11
these are to get approximates What is the original sine formula?
 
  • #12
What do you mean...?That formula converges for every argument and can definitely e put under a simpler form,using the summation symbol "sigma".

Daniel.
 
  • #13
eax said:
these are to get approximates What is the original sine formula?
[tex]\text{Sine}(\theta) = \frac{\text{Opposite}}{\text{Hypotenuse}}[/tex]
 
  • #14
eax said:
these are to get approximates What is the original sine formula?
There's no such thing as an "original sine function." The sine function is transcendental, so it cannot be represented exactly in any algebraic form of finite length.

- Warren
 
  • #15
Yes,Mathwonk,i'm sure everyone noticed that :wink:

Daniel.
 
  • #16
So then how was sine discovered? Is it possible to get sin(x) without using an infinite series equation?
 
  • #17
You've been answered to the last question already.
As for the first,i can't trace it back earlier than Claudius Ptolemeu's tables on light refraction in water.

Daniel.
 
  • #18
Sine tables were constructed empiricaly, to a decent number of significant digits, in the old days.

How is that for rigor!
 
  • #19
And what is that supposed to mean...?You know,a little is always better than nothing...


Daniel.
 
  • #20
One remark about defining sin, which may be obvious, is: if you look at the circle function definition, the sine function is the inverse of the circular arclength function.

i.e. the possibly more natural function is the function arcsin(y) taking y to the arclength along the circle from the point (1,0) where the circle meets the x axis, to the point on the circle at height y, for 0 <= y <= 1.

this function takes values from 0 to <pi>/2, and sin is its inverse on that interval.

this suggests the definition of sin as the inverse of the arclength integral

i.e. of the integral of dt/sqrt(1-t^2) from t=0 to t=x.

this is the analog of defining ln(x) as an integral, and then defining e^x as its inverse, or of defining an elliptic function as the inverse of the integral of dt/sqrt(1-t^4), as Euler did.

My opinion is it is natural to wonder how to express circular arclength as a function of some simpler parameter such as height, but rather less natural to ask about the sin function, its inverse.
 
Last edited:
  • #21
eax said:
So then how was sine discovered? Is it possible to get sin(x) without using an infinite series equation?

Crosson's right. The sine and cosine were discovered empirically maybe as much as 3000 years before calculus, integration, Taylor, or McLaurin series were invented. They were simply using the concept of similar triangles. If the angles of one triangle were equal to that of a second, then the sides of both triangles must have the same proportions.

In fact, they eventually led to Euler's logarithmic functions. Trig tables were used for multiplication and division via your cosine/sine addition/subtraction identities for quite awhile before logarithms were ever invented. Napier drew from that and came up with base 10 logarithms, and Euler expanded on Napier's work to get the natural logarithms and e.
 

FAQ: How Were Sine and Cosine Discovered?

What does this symbol mean?

This is a common question in the field of science, as symbols are often used to represent complex ideas or concepts. Here are some possible answers:

What is the purpose of using symbols in science?

Symbols are used in science to represent complex ideas or concepts in a concise and efficient manner. They allow scientists to communicate and record information in a standardized way.

How are symbols chosen in science?

Symbols are often chosen based on their resemblance to the concept they represent, or their significance in the field. For example, the symbol for infinity (∞) was chosen because it represents something that is unbounded and endless.

Can symbols have different meanings in different scientific fields?

Yes, symbols can have different meanings in different fields of science. For example, the symbol "H" can represent hydrogen in chemistry, while in physics it can represent Planck's constant.

Are symbols universal in science?

While symbols are often used in a standardized way within a particular field, they may not be universal across all fields of science. Additionally, symbols may have different meanings in different languages, so translation and context are important when using symbols.

How can I find the meaning of a specific symbol in science?

If you come across a symbol that you are unfamiliar with, you can consult a scientific reference book or search online for its meaning. It's also important to consider the context in which the symbol is being used, as it may have a different meaning in different contexts.

Similar threads

Replies
6
Views
2K
Replies
1
Views
2K
Replies
2
Views
2K
Replies
6
Views
4K
Replies
4
Views
797
Replies
2
Views
3K
Replies
2
Views
2K
Replies
3
Views
1K
Back
Top