- #1
Moshe1010
- 5
- 0
Consider the following:
You have a circuit with an inductor and a battery. You have an open switch, that was open for gazillion years. The inductor is "uncharged", meaning has no stored magnetic field. Then, you close the switch. At time t=0+, right at the moment you closed the switch, the current at the circuit is zero due to the resistance of the inductor. This happens due to a voltage/emf change. I get the idea that Faraday's Law relates the change in current and change in magnetic flux with time and I also understand the graphs/time constants etc`.
These are the questions:
1. If there is no current at t=0+, how does the inductor make a change in voltage to resist the current? where this voltage is generated from?
2. As far as I understand, current is not even flowing out of the battery (at all) at t=0+, then again, what creates the change in potential energy in the inductors, that creates the change in magnetic flux which is affected by change in current if no current was flowing from the battery? To remind you, the inductor is "uncharged", no current was flowing in the inductor for gazillion years, so there is no magnetic field to create energy/voltage.
3. How is it different than connecting a resistor to a circuit with a battery (just a resistor and a battery, without anything else). At t=0+, right when you close the switch, current starts to flow from the battery to the resistor. This is not the case with an inductor. Would you say the battery has some sort of mental decision when to release a current based on the connected properties in the circuit? How does the battery know what is connected or not along the way?
Assume these are ideal batteries, wires,/coils/inductor (no resistance) and everything else.
Thanks for the help.
You have a circuit with an inductor and a battery. You have an open switch, that was open for gazillion years. The inductor is "uncharged", meaning has no stored magnetic field. Then, you close the switch. At time t=0+, right at the moment you closed the switch, the current at the circuit is zero due to the resistance of the inductor. This happens due to a voltage/emf change. I get the idea that Faraday's Law relates the change in current and change in magnetic flux with time and I also understand the graphs/time constants etc`.
These are the questions:
1. If there is no current at t=0+, how does the inductor make a change in voltage to resist the current? where this voltage is generated from?
2. As far as I understand, current is not even flowing out of the battery (at all) at t=0+, then again, what creates the change in potential energy in the inductors, that creates the change in magnetic flux which is affected by change in current if no current was flowing from the battery? To remind you, the inductor is "uncharged", no current was flowing in the inductor for gazillion years, so there is no magnetic field to create energy/voltage.
3. How is it different than connecting a resistor to a circuit with a battery (just a resistor and a battery, without anything else). At t=0+, right when you close the switch, current starts to flow from the battery to the resistor. This is not the case with an inductor. Would you say the battery has some sort of mental decision when to release a current based on the connected properties in the circuit? How does the battery know what is connected or not along the way?
Assume these are ideal batteries, wires,/coils/inductor (no resistance) and everything else.
Thanks for the help.
Last edited: