MHB How would you solve for x using the double angle formula?

  • Thread starter Thread starter bsmithysmith
  • Start date Start date
  • Tags Tags
    Angle Formula
AI Thread Summary
To solve the equation 2sin(2x) - 3sin(x) = 0, the double angle formula for sine is applied, resulting in 4sin(x)cos(x) - 3sin(x) = 0. This can be factored to sin(x)(4cos(x) - 3) = 0. The solutions are found by setting sin(x) = 0, yielding x = 0 and x = π, and solving for cos(x) = 3/4, leading to x = 2π - cos^(-1)(3/4) and cos^(-1)(3/4). The solutions are valid within the interval 0 ≤ x < 2π.
bsmithysmith
Messages
23
Reaction score
0
$$2sin(2x)-3sin(x)=0$$

We did this in my class, but there were some parts where I was really confused. I know that we need to use the double angle formula, and the double angle formula for Sine is:

$$sin(2x) = 2sin(x)cos(x)$$

and correct me if I'm wrong. So what I had down is:

$$2(2sin(x)cos(x))-3sin(x)=0$$

From thereon, I don't know where I should distribute it or something else. I checked Wolframalpha (just in case), and it showed:

$$4cos(x)sin(x)-3sin(x)=0$$

I would think that the 2 would just distribute evenly, but how would I properly get through this part?
 
Mathematics news on Phys.org
You are proceeding correctly. We are given:

$$2\sin(2x)-3\sin(x)=0$$

Applying the double-angle identity for sine, we obtain:

$$2\left(2\sin(x)\cos(x)\right)-3\sin(x)=0$$

$$4\sin(x)\cos(x)-3\sin(x)=0$$

Now what you want to do is factor, and use the zero-factor property...
 
MarkFL said:
You are proceeding correctly. We are given:

$$2\sin(2x)-3\sin(x)=0$$

Applying the double-angle identity for sine, we obtain:

$$2\left(2\sin(x)\cos(x)\right)-3\sin(x)=0$$

$$4\sin(x)\cos(x)-3\sin(x)=0$$

Now what you want to do is factor, and use the zero-factor property...

So I was correct after all (outside the forum)!

$$4\sin(x)\cos(x)-3\sin(x)=0$$
$$sin(x)(4cos(x)-3)=0$$

so it's $$sin(x)=0$$
and $$cos(x)=3/4$$

For sine, $$x=0, pi$$ and for cosine, it's $$2pi-cos^1(3/4)$$ and $$cos^-1(3/4)$$ Note, it's Cosine inverse
 
Yes, those are the solutions if you are restricted to:

$$0\le x<2\pi$$

To denote special characters using $\LaTeX$ like $$\pi$$ and functions with fractions like $$\cos^{-1}\left(\frac{3}{4}\right)$$, precede them with backslashes and use the frac command like so:

[noparsetex]$$\pi$$[/noparsetex]

[noparsetex]$$\cos^{-1}\left(\frac{3}{4}\right)$$[/noparsetex]
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top