- #1
JBlue
- 2
- 1
- TL;DR Summary
- After measuring Sx, we know its state exactly. This seems to violate Heisenberg's Uncertainty Principle (HUP).
HUP for spins reads
$$\langle\sigma_z^2\rangle\langle\sigma_x^2\rangle \ge \frac{1}{4}|\langle\sigma_y\rangle|^2$$
Right after measuring ##\sigma_z##, we know it exactly, and so ##\langle\sigma_z^2\rangle=0##.
However, HUP then implies that ##\langle\sigma_y^2\rangle=\infty##
Even if we say that the uncertainty isn't ##0## but some small ##\epsilon##, we still get a ##\langle\sigma_y^2\rangle## that is very large, though it shouldn't be greater than ##\hbar##.
What am I missing?
$$\langle\sigma_z^2\rangle\langle\sigma_x^2\rangle \ge \frac{1}{4}|\langle\sigma_y\rangle|^2$$
Right after measuring ##\sigma_z##, we know it exactly, and so ##\langle\sigma_z^2\rangle=0##.
However, HUP then implies that ##\langle\sigma_y^2\rangle=\infty##
Even if we say that the uncertainty isn't ##0## but some small ##\epsilon##, we still get a ##\langle\sigma_y^2\rangle## that is very large, though it shouldn't be greater than ##\hbar##.
What am I missing?