- #1
intel2000
- 2
- 0
I recently read a question in which a poster questioned what would happen if you dissolved a compressed spring in acid and an uncompressed spring in acid. The question was where would the stored energy go from the compressed spring as it dissolved? The answer was that in experiments scientists have found that as the compressed spring dissolved, the acid would heat up more than that of the uncompressed spring, conserving energy. I'd like to take a different approach.
Let's say using nano-technology, we can build a spring one atom at a time. I wonder if it would take more energy to simply build a compressed spring than an uncompressed spring. If so, why? I know the answer is conservation of energy, but it is hard to imagine the atoms getting "harder" to put in place while making a compressed spring one atom at a time, but not for the uncompressed spring.
Any thoughts?
Let's say using nano-technology, we can build a spring one atom at a time. I wonder if it would take more energy to simply build a compressed spring than an uncompressed spring. If so, why? I know the answer is conservation of energy, but it is hard to imagine the atoms getting "harder" to put in place while making a compressed spring one atom at a time, but not for the uncompressed spring.
Any thoughts?