- #1
td21
Gold Member
- 177
- 8
I wonder what the name of this normalization process is for better reference.
The scenario is like this:
$$\left|\Psi\right> = \frac{1}{\sqrt{6}}\left(\left|a\right>+\left|b\right>+\left|c\right>+\left|d\right>+\left|e\right>+\left|f\right>\right)$$
where each of the components inside the bracket is orthonormal to each other.
$$M$$ is an operator which is non-hermitian.
$$M\left|\Psi\right> = \frac{1}{\sqrt{6}}\left(\left|a'\right>+\left|b'\right>+\left|c'\right>+\left|d'\right>+\left|e'\right>+\left|f'\right>\right).$$
If $$\left|a'\right>=\left|d'\right>$$, $$\left|b'\right> = \left|e'\right>$$, $$\left|c'\right> = \left|f'\right>$$,
then $$H\left|\Psi\right> = \frac{2}{\sqrt{6}}\left(\left|a'\right>+\left|b'\right>+\left|c'\right>\right).$$
We have to normalize this new state. What is this normalization principle called in quantum mechanics or any textbook regarding this? Thank you very much.
The scenario is like this:
$$\left|\Psi\right> = \frac{1}{\sqrt{6}}\left(\left|a\right>+\left|b\right>+\left|c\right>+\left|d\right>+\left|e\right>+\left|f\right>\right)$$
where each of the components inside the bracket is orthonormal to each other.
$$M$$ is an operator which is non-hermitian.
$$M\left|\Psi\right> = \frac{1}{\sqrt{6}}\left(\left|a'\right>+\left|b'\right>+\left|c'\right>+\left|d'\right>+\left|e'\right>+\left|f'\right>\right).$$
If $$\left|a'\right>=\left|d'\right>$$, $$\left|b'\right> = \left|e'\right>$$, $$\left|c'\right> = \left|f'\right>$$,
then $$H\left|\Psi\right> = \frac{2}{\sqrt{6}}\left(\left|a'\right>+\left|b'\right>+\left|c'\right>\right).$$
We have to normalize this new state. What is this normalization principle called in quantum mechanics or any textbook regarding this? Thank you very much.
Last edited: