MHB Ideals in Q[x, y] .... Cox, Little and O'Shea, Chapter 1 Section 4

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Section
Click For Summary
The discussion centers on Exercise 3(c) from Chapter 1, Section 4 of "Ideals, Varieties and Algorithms" by Cox, Little, and O'Shea. Participants focus on demonstrating that two ideals contain each other by expressing their generators as elements of the opposing ideal. A specific approach is suggested, involving rewriting the polynomials $x^2 - 4$ and $y^2 - 1$ in terms of the generators of the other ideal. This method successfully aids the original poster, Peter, in solving the problem. The exchange highlights the collaborative nature of tackling complex algebraic concepts.
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading the undergraduate introduction to algebraic geometry entitled "Ideals, Varieties and Algorithms: An introduction to Computational Algebraic Geometry and Commutative Algebra (Third Edition) by David Cox, John Little and Donal O'Shea ... ...

I am currently focused on Chapter 1, Section 4: Ideals ... ... and need help with Exercise 3(c) which reads as follows:
View attachment 5672I would be grateful if someone could help me with Exercise 3c ...

Help will be appreciated ... ...

Peter
 
Physics news on Phys.org
Hi Peter,

Peter said:
I would be grateful if someone could help me with Exercise 3c ...

We want to show that each ideal contains the other, and, according to Problem 2, it suffices to show that the generators of one ideal are elements of the other ideal. With this in mind, try writing $x^2 - 4$ and $y^2 -1$ as elements of $\langle 2x^2 + 3y^2 -11, x^2 - y^2 -3\rangle$, which will prove $\langle x^2 - 4, y^2 - 1\rangle \subseteq \langle 2x^2 + 3y^2 -11, x^2 - y^2 -3\rangle.$ Then do the analogous thing to prove the opposite containment.

Let me know if you have any questions. Good luck!
 
GJA said:
Hi Peter,
We want to show that each ideal contains the other, and, according to Problem 2, it suffices to show that the generators of one ideal are elements of the other ideal. With this in mind, try writing $x^2 - 4$ and $y^2 -1$ as elements of $\langle 2x^2 + 3y^2 -11, x^2 - y^2 -3\rangle$, which will prove $\langle x^2 - 4, y^2 - 1\rangle \subseteq \langle 2x^2 + 3y^2 -11, x^2 - y^2 -3\rangle.$ Then do the analogous thing to prove the opposite containment.

Let me know if you have any questions. Good luck!
Thanks GJA ...

That bit of help and encouragement enabled me to solve the problem ...

... thanks again ...

Peter
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
2
Views
2K
Replies
3
Views
2K
Replies
2
Views
2K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K