- #1
mangojuice14
- 6
- 0
Homework Statement
Two identical particles, each of mass m, move in one dimension in the potential
$$V = \frac{1}{2}A(x_1^2+x_2^2)+ \frac{1}{2}B(x_1-x_2)^2$$
where A and B are positive constants and ##x_1## and ##x_2## denote the positions of the particles.
a) Show that the Schrodinger equation is separable in the variables ##x_1+x_2## and ##x_1-x_2##. Find the eigenvalues and the corresponding eigenfunctions.
b)Discuss the symmetry of the eigenfunctions with respect to particle exchange.
Homework Equations
Schrodinger equation:
$$HΨ = EΨ$$
Hamiltonian for identical particles
$$H = \frac{-ħ}{2m}\frac{d^2}{dx_1^2}-\frac{-ħ}{2m}\frac{d^2}{dx_2^2}+\frac{1}{2}A(x_1^2+x_2^2)+ \frac{1}{2}B(x_1-x_2)^2$$
The Attempt at a Solution
I plugged in the Hamiltonian into the Schrodinger equation, and separated variables by setting ##Ψ=X(x_1+x_2)Y(x_1-x_2)##, replaced Ψ with the product and divided by ##XY##. I end up with something I can't really solve. I'm mostly not sure if my separation method is correct, I'm confused on what it means by 'separable in the variables ##x_1+x_2## and ##x_1-x_2##' rather than just ##x_1## and ##x_2## for example. Thanks