- #1
goodphy
- 216
- 8
Hello.
I would like to ask one simple question. Do we need to distinguish E-field (Electric field) in Gauss's law from those in Maxwell-Faraday equation and Ampere's circuit law? I firstly thought that E-field in Gauss's law is only for electrostatics so I need to distinguish it from E-field in time-varying Maxwell equations, If I try to do some calculation with the law. But later, I have a feeling that I may need to treat them equally; E-field in Gauss's law is also E-field in other equations. Even If I apply time-varying E-field to Gauss's law, the law gives me a correct answer; RHS of Gauss's law is zero when E-field is purely from time-varying B-field, like electromagnetic waves, in a charge free zone. The same reasoning can be applied to B-field. So every E-field (or B-field) in Maxwell's equations are the same.
Could you tell me whether or not I'm right?
I would like to ask one simple question. Do we need to distinguish E-field (Electric field) in Gauss's law from those in Maxwell-Faraday equation and Ampere's circuit law? I firstly thought that E-field in Gauss's law is only for electrostatics so I need to distinguish it from E-field in time-varying Maxwell equations, If I try to do some calculation with the law. But later, I have a feeling that I may need to treat them equally; E-field in Gauss's law is also E-field in other equations. Even If I apply time-varying E-field to Gauss's law, the law gives me a correct answer; RHS of Gauss's law is zero when E-field is purely from time-varying B-field, like electromagnetic waves, in a charge free zone. The same reasoning can be applied to B-field. So every E-field (or B-field) in Maxwell's equations are the same.
Could you tell me whether or not I'm right?