- #1
mhill
- 189
- 1
it is true in general that the sum (density of states for a physicst)
[tex] \sum_{n=0}^{\infty} \delta (x- \gamma _{n}) [/tex]
is related to the value [tex] \frac{ \zeta '(1/2+is)}{\zeta (1/2+is)}+\frac{ \zeta '(1/2-is)}{\zeta (1/2-is)} [/tex]
here the 'gamma' are the imaginary parts of the non-trivial zeros of Riemann zeta function
[tex] \sum_{n=0}^{\infty} \delta (x- \gamma _{n}) [/tex]
is related to the value [tex] \frac{ \zeta '(1/2+is)}{\zeta (1/2+is)}+\frac{ \zeta '(1/2-is)}{\zeta (1/2-is)} [/tex]
here the 'gamma' are the imaginary parts of the non-trivial zeros of Riemann zeta function