- #1
happyparticle
- 465
- 21
- Homework Statement
- Show that a vector is an eigenvector of an operator
- Relevant Equations
- ##A|a\rangle = a|a\rangle##
Hi,
If ##|a\rangle## is an eigenvector of the operator ##A##, I know that for any scalar ##c \neq 0## , ##c|a\rangle## is also an eigenvector of ##A##
Now, is the ket ##F(B)|a\rangle## an eigenvector of ##A##? Where ##B## is an operator and ##F(B)## a function of ##B##.
Is there way to show that ##F(B)|a\rangle## is and eigenvector of ##A## and find the eigenvalue?
Thank you!
If ##|a\rangle## is an eigenvector of the operator ##A##, I know that for any scalar ##c \neq 0## , ##c|a\rangle## is also an eigenvector of ##A##
Now, is the ket ##F(B)|a\rangle## an eigenvector of ##A##? Where ##B## is an operator and ##F(B)## a function of ##B##.
Is there way to show that ##F(B)|a\rangle## is and eigenvector of ##A## and find the eigenvalue?
Thank you!