- #1
Math100
- 802
- 222
- Homework Statement
- Prove the assertion below:
If ## a ## is an odd integer, then ## a^{2}\equiv 1\pmod {8} ##.
- Relevant Equations
- None.
Proof:
Suppose ## a ## is an odd integer.
Then ## a=2k+1 ## for some ## k\in\mathbb{Z} ##.
Note that ## a^{2}=(2k+1)^{2}=4k^{2}+4k+1=4k(k+1)+1 ##.
Since ## k(k+1) ## is the product of two consecutive integers,
it follows that ## k(k+1) ## must be even.
This means ## k(k+1)=2m ## for some ## m\in\mathbb{Z} ##.
Thus ## a^{2}=4(2m)+1=8m+1\implies a^{2}\equiv 1\pmod {8} ##.
Therefore, if ## a ## is an odd integer, then ## a^{2}\equiv 1\pmod {8} ##.
Suppose ## a ## is an odd integer.
Then ## a=2k+1 ## for some ## k\in\mathbb{Z} ##.
Note that ## a^{2}=(2k+1)^{2}=4k^{2}+4k+1=4k(k+1)+1 ##.
Since ## k(k+1) ## is the product of two consecutive integers,
it follows that ## k(k+1) ## must be even.
This means ## k(k+1)=2m ## for some ## m\in\mathbb{Z} ##.
Thus ## a^{2}=4(2m)+1=8m+1\implies a^{2}\equiv 1\pmod {8} ##.
Therefore, if ## a ## is an odd integer, then ## a^{2}\equiv 1\pmod {8} ##.