- #1
Eclair_de_XII
- 1,083
- 91
- Homework Statement
- Let ##p(x)=a_0+\ldots+a_nx^n## be a polynomial of degree at most ##n##. Prove that if ##p(x)=0##, then all coefficients ##a_i=0##.
- Relevant Equations
- Induction: Suppose ##S## is a well-ordered set with a least element ##a##. Then ##S## satisfies the induction hypothesis if whenever ##n\in S##, ##n+1\in S##. Note: Did not know how to incorporate this into proof attempt.
Also, the property of real numbers: if for ##a,b\in \mathbb{R}##,whenever ##ab=0##, either ##a=0## or ##b=0##. I invoke this property in the second line of the equation in the second part of this proof attempt.
Suppose
##a_0+a_1x+\ldots+a_nx^n=0##
and restrict the domain of ##p## to the set of real numbers excluding the roots of ##p##. Note that:
if ##a_0 == 0##: ##x=0## is a root of ##p##
else: ##x=0## is not a root of ##p##
Assume the latter. Subtract ##a_0## from both sides of the equation.
##x(a_1+\ldots+a_nx^{n-1})=-a_0##
Set ##x=0## since it is not a root of ##p##, and we have a contradiction: ##0=-a_0\neq 0##. Hence, ##a_0=0##.
%%%
Now we proceed as follows:
\begin{align}
a_0+a_1x+a_2x^2+\ldots+a_nx^n&=&a_1x+a_2x^2+\ldots+a_nx^n\\
&=&x(a_1+a_2x+\ldots+a_nx^{n-1})\\
&=&0
\end{align}
Note that again, ##x=0## is a root of ##p##. Assume ##x\neq 0##. This means:
##a_1+a_2x+\ldots+a_nx^{n-1}=0##
And here we repeat the argument above (the triple percentage signs) for powers of ##x## from ##1## to ##n## until we conclude that ##a_i=0## for all ##i\in\{1,\ldots,n\}##.
##a_0+a_1x+\ldots+a_nx^n=0##
and restrict the domain of ##p## to the set of real numbers excluding the roots of ##p##. Note that:
if ##a_0 == 0##: ##x=0## is a root of ##p##
else: ##x=0## is not a root of ##p##
Assume the latter. Subtract ##a_0## from both sides of the equation.
##x(a_1+\ldots+a_nx^{n-1})=-a_0##
Set ##x=0## since it is not a root of ##p##, and we have a contradiction: ##0=-a_0\neq 0##. Hence, ##a_0=0##.
%%%
Now we proceed as follows:
\begin{align}
a_0+a_1x+a_2x^2+\ldots+a_nx^n&=&a_1x+a_2x^2+\ldots+a_nx^n\\
&=&x(a_1+a_2x+\ldots+a_nx^{n-1})\\
&=&0
\end{align}
Note that again, ##x=0## is a root of ##p##. Assume ##x\neq 0##. This means:
##a_1+a_2x+\ldots+a_nx^{n-1}=0##
And here we repeat the argument above (the triple percentage signs) for powers of ##x## from ##1## to ##n## until we conclude that ##a_i=0## for all ##i\in\{1,\ldots,n\}##.