- #1
MI5
- 8
- 0
Theorem: If c|ab and (b, c) = 1 then c|a.
Proof: Consider (ab, ac) = a(b, c) = a. We have c|ab and clearly c|ac so c|a. It's not so clear to me why c|ac. Perhaps I'm missing something really obvious.
Proof: Consider (ab, ac) = a(b, c) = a. We have c|ab and clearly c|ac so c|a. It's not so clear to me why c|ac. Perhaps I'm missing something really obvious.