- #1
Math100
- 802
- 222
- Homework Statement
- Establish the following statement:
If ## n>4 ## is composite, then ## n ## divides ## (n-1)! ##.
- Relevant Equations
- None.
Proof:
Suppose ## n>4 ## is composite.
Then ## n ## is either even or odd.
Now we consider these two cases separately.
Case #1: Let ## n=2k ## for some ## k\in\mathbb{Z} ##.
Then we have ## n\mid (n-1)! = 2k\mid (2k-1)! ##.
Thus, ## n ## divides ## (n-1)! ##.
Case #2: Let ## n=2k+1 ## for some ## k\in\mathbb{Z} ##.
Then we have ## n\mid (n-1)! = (2k+1)\mid (2k+1-1)! ##
= ## (2k+1)\mid (2k)! ##.
Thus, ## n ## divides ## (n-1)! ##.
Therefore, if ## n>4 ## is composite, then ## n ## divides ## (n-1)! ##.
Suppose ## n>4 ## is composite.
Then ## n ## is either even or odd.
Now we consider these two cases separately.
Case #1: Let ## n=2k ## for some ## k\in\mathbb{Z} ##.
Then we have ## n\mid (n-1)! = 2k\mid (2k-1)! ##.
Thus, ## n ## divides ## (n-1)! ##.
Case #2: Let ## n=2k+1 ## for some ## k\in\mathbb{Z} ##.
Then we have ## n\mid (n-1)! = (2k+1)\mid (2k+1-1)! ##
= ## (2k+1)\mid (2k)! ##.
Thus, ## n ## divides ## (n-1)! ##.
Therefore, if ## n>4 ## is composite, then ## n ## divides ## (n-1)! ##.