- #1
Math100
- 807
- 225
- Homework Statement
- If ## p ## and ## p^{2}+8 ## are both prime numbers, prove that ## p^{3}+4 ## is also prime.
- Relevant Equations
- None.
Proof:
Suppose ## p ## and ## p^{2}+8 ## are both prime numbers.
Since ## p^{2}+8 ## is prime, it follows that ## p ## is odd, so ## p\neq 2 ##.
Let ## p>3 ##.
Then ## p^{2}\equiv 1 \mod 3 ##,
so ## p^{2}+8\equiv 0 \mod 3 ##.
Note that ## p^{2}+8 ## can only be prime for ## p=3 ##.
Thus ## p^{3}+4=27+4=31 ##, which is also prime.
Therefore, if ## p ## and ## p^{2}+8 ## are both prime numbers,
then ## p^{3}+4 ## is also prime.
Suppose ## p ## and ## p^{2}+8 ## are both prime numbers.
Since ## p^{2}+8 ## is prime, it follows that ## p ## is odd, so ## p\neq 2 ##.
Let ## p>3 ##.
Then ## p^{2}\equiv 1 \mod 3 ##,
so ## p^{2}+8\equiv 0 \mod 3 ##.
Note that ## p^{2}+8 ## can only be prime for ## p=3 ##.
Thus ## p^{3}+4=27+4=31 ##, which is also prime.
Therefore, if ## p ## and ## p^{2}+8 ## are both prime numbers,
then ## p^{3}+4 ## is also prime.
Last edited: