- #1
Math100
- 802
- 222
- Homework Statement
- If ## p\neq5 ## is an odd prime, prove that either ## p^{2}-1 ## or ## p^{2}+1 ## is divisible by 10.
- Relevant Equations
- None.
Proof:
Suppose ## p\neq5 ## is an odd prime.
Applying the Division Algorithm produces:
## p=10q+r ## where ## 0\leq r\leq 10 ##,
where there exist unique integers ## q ## and ## r ##.
Note that ## p\equiv 1, 3, 7 ## or ## 9 ## mod ## 10 ##.
This means ## p^{2}\equiv 1, -1, -1 ## or ## 1 ## mod ## 10 ##.
Then we have ## p=10q+1, p=10q+3, p=10q+7 ## or ## p=10q+9 ##.
Now we consider four cases.
Case #1: Suppose ## p=10q+1 ## for some ## q\in\mathbb{Z} ##.
Then we have ## p^{2}-1=(10q+1)^{2} -1
=100q^{2} +20q+1-1
=100q^{2}+20q
=10(10q^{2}+2q)
=10m ##,
where ## m=10q^{2} +2q ## is an integer.
Thus, ## p^{2} -1 ## is divisible by ## 10 ##.
Case #2: Suppose ## p=10q+3 ## for some ## q\in\mathbb{Z} ##.
Then we have ## p^{2} +1=(10q+3)^{2} +1
=100q^2 +60q+10
=10(10q^{2} +6q+1)
=10n ##,
where ## n=10q^{2} +6q+1 ## is an integer.
Thus, ## p^{2} +1 ## is divisible by ## 10 ##.
Case #3: Suppose ## p=10q+7 ## for some ## q\in\mathbb{Z} ##.
Then we have ## p^{2} +1=(10q+7)^{2} +1
=100q^{2} +140q+49+1
=100q^{2} +140q+50
=10(10q^{2} +14q+5)
=10r ##,
where ## r=10q^{2} +14q+5 ## is an integer.
Thus, ## p^{2} +1 ## is divisible by ## 10 ##.
Case #4: Suppose ## p=10q+9 ## for some ## q\in\mathbb{Z} ##.
Then we have ## p^{2} -1=(10q+9)^{2} -1
=100q^{2} +180q+81-1
=100q^{2} +180q+80
=10(10q^{2} +18q+8)
=10s ##,
where ## s=10q^{2} +18q+8 ## is an integer.
Thus, ## p^{2} -1 ## is divisible by ## 10 ##.
Therefore, if ## p\neq 5 ## is an odd prime, then either ## p^{2} -1 ## or ## p^{2} +1 ## is divisible by ## 10 ##.
Suppose ## p\neq5 ## is an odd prime.
Applying the Division Algorithm produces:
## p=10q+r ## where ## 0\leq r\leq 10 ##,
where there exist unique integers ## q ## and ## r ##.
Note that ## p\equiv 1, 3, 7 ## or ## 9 ## mod ## 10 ##.
This means ## p^{2}\equiv 1, -1, -1 ## or ## 1 ## mod ## 10 ##.
Then we have ## p=10q+1, p=10q+3, p=10q+7 ## or ## p=10q+9 ##.
Now we consider four cases.
Case #1: Suppose ## p=10q+1 ## for some ## q\in\mathbb{Z} ##.
Then we have ## p^{2}-1=(10q+1)^{2} -1
=100q^{2} +20q+1-1
=100q^{2}+20q
=10(10q^{2}+2q)
=10m ##,
where ## m=10q^{2} +2q ## is an integer.
Thus, ## p^{2} -1 ## is divisible by ## 10 ##.
Case #2: Suppose ## p=10q+3 ## for some ## q\in\mathbb{Z} ##.
Then we have ## p^{2} +1=(10q+3)^{2} +1
=100q^2 +60q+10
=10(10q^{2} +6q+1)
=10n ##,
where ## n=10q^{2} +6q+1 ## is an integer.
Thus, ## p^{2} +1 ## is divisible by ## 10 ##.
Case #3: Suppose ## p=10q+7 ## for some ## q\in\mathbb{Z} ##.
Then we have ## p^{2} +1=(10q+7)^{2} +1
=100q^{2} +140q+49+1
=100q^{2} +140q+50
=10(10q^{2} +14q+5)
=10r ##,
where ## r=10q^{2} +14q+5 ## is an integer.
Thus, ## p^{2} +1 ## is divisible by ## 10 ##.
Case #4: Suppose ## p=10q+9 ## for some ## q\in\mathbb{Z} ##.
Then we have ## p^{2} -1=(10q+9)^{2} -1
=100q^{2} +180q+81-1
=100q^{2} +180q+80
=10(10q^{2} +18q+8)
=10s ##,
where ## s=10q^{2} +18q+8 ## is an integer.
Thus, ## p^{2} -1 ## is divisible by ## 10 ##.
Therefore, if ## p\neq 5 ## is an odd prime, then either ## p^{2} -1 ## or ## p^{2} +1 ## is divisible by ## 10 ##.