- #1
swampwiz
- 571
- 83
NOTE: presume real coefficients
If a pair of polynomials have the Greatest Common Factor (GCF) as 1, it would seem that any root of one of the pair cannot possibly be a root of the other, and vice-versa, since as per the Fundamental Theorem of Algebra, any polynomial can be decomposed into a set of linear (real root) or non-decomposible quadratic factor (complex conjugate root), and so if any value is a real root of one, for it to be a root of the other, the GCF would not be 1 - and likewise for any complex number, as it would only be a root for a specific quadratic factor.
So:
factors: A( x ) , B( x )
A( c ) = 0 & B( c ) = 0 ⇒ GCF( A( c ) , B( c ) ) != 1
GCF( A( c ) , B( c ) ) = 1 ⇒ !∃ c : [ A( c ) = 0 & B( c ) = 0 ] ⇔ no common roots
!E there does not exist
Is this accurate, or am I missing something? Thanks
If a pair of polynomials have the Greatest Common Factor (GCF) as 1, it would seem that any root of one of the pair cannot possibly be a root of the other, and vice-versa, since as per the Fundamental Theorem of Algebra, any polynomial can be decomposed into a set of linear (real root) or non-decomposible quadratic factor (complex conjugate root), and so if any value is a real root of one, for it to be a root of the other, the GCF would not be 1 - and likewise for any complex number, as it would only be a root for a specific quadratic factor.
So:
factors: A( x ) , B( x )
A( c ) = 0 & B( c ) = 0 ⇒ GCF( A( c ) , B( c ) ) != 1
GCF( A( c ) , B( c ) ) = 1 ⇒ !∃ c : [ A( c ) = 0 & B( c ) = 0 ] ⇔ no common roots
!E there does not exist
Is this accurate, or am I missing something? Thanks