- #1
Jncik
- 103
- 0
Homework Statement
find
[tex]\sum_{-N1}^{+N1}e^{-j\omega n}[/tex]
Homework Equations
The Attempt at a Solution
Let [tex]\lambda = e^{-j\omega} [/tex]
we have
[tex]\sum_{-N1}^{+N1}\lambda ^{n} = \sum_{-N1}^{-1}\lambda ^{n} + \sum_{0}^{+N1} \lambda ^{n}[/tex]
for the first i have
[tex]S = \lambda ^{-N1} + \lambda ^{-N1+1} + \lambda ^{-N1+2} + ... + \lambda ^{-2} + \lambda ^{-1}[/tex]
[tex]-\lambda S = -\lambda ^{-N1+1} - \lambda ^{-N1+2} - \lambda ^{-N1+3} - ... - \lambda ^{-1} - \lambda ^{0} [/tex]
hence
[tex] S = \frac{\lambda ^{-N1} - 1}{1-\lambda }[/tex]
for the second i have
[tex] S2 = \lambda^{0} + \lambda^{1} + ... + \lambda^{N1-1} + \lambda^{N1}[/tex]
[tex] -\lambda S2 = -\lambda^{1} - \lambda^{2} - ... - \lambda^{N1} - \lambda^{N1+1}[/tex]
hence
[tex] S2 = \frac{1 - \lambda^{N1+1}}{1-\lambda}[/tex]
so the sum is
[tex]\frac{1-\lambda^{N1+1} + \lambda^{-N1} - 1}{1-\lambda} = \frac{\lambda^{-N1} - \lambda^{N1+1}}{1-\lambda} = \frac{e^{j \omega N1} - e^{-j \omega N1}e^{-j\omega}}{1-e^{-j\omega}}[/tex]
but the book says [tex]\frac{sin\omega(N1 + \frac{1}{2})}{sin(\frac{\omega}{2})}[/tex]