- #1
159753x
- 17
- 0
I'm having trouble completing this proof for homework.
1. Homework Statement
Prove that cos θ + cos 3θ + cos 5θ + ... + cos (2n-1)θ = (sin 2nθ)/(2 sin θ).
Prove that sin θ + sin 3θ + sin 5θ + ... + sin (2n-1)θ = (sin nθ)^2/(sin θ).
Use Euler's formula and the geometric progression formula.
Euler's formula is
.
The geometric progression formula is
, where a is the first term and r is the constant that each term is multiplied by to get the next term.
[/B]
I've tried a number of ways, none of which I have been able to simplify. Can anybody who can see the right way to complete this proof perhaps give me some direction? For example, what are the starting points for a and r? I feel like I have tried everything I can think of, but I couldn't simplify it.
How can I do the geometric progression formula if the series isn't exponential? I know I can use Euler's formula to transfer the cosines to exponentials, but how can I do this is the series consists only of cosines? How can I use the formula without the i sin(θ) terms? It seems that I can't substitute for the formula then... Hmm...
If anybody knows any tricks or guidance, it would be greatly appreciated! Thanks in advance
- Leo
1. Homework Statement
Prove that cos θ + cos 3θ + cos 5θ + ... + cos (2n-1)θ = (sin 2nθ)/(2 sin θ).
Prove that sin θ + sin 3θ + sin 5θ + ... + sin (2n-1)θ = (sin nθ)^2/(sin θ).
Use Euler's formula and the geometric progression formula.
Homework Equations
Euler's formula is
The geometric progression formula is
The Attempt at a Solution
[/B]
I've tried a number of ways, none of which I have been able to simplify. Can anybody who can see the right way to complete this proof perhaps give me some direction? For example, what are the starting points for a and r? I feel like I have tried everything I can think of, but I couldn't simplify it.
How can I do the geometric progression formula if the series isn't exponential? I know I can use Euler's formula to transfer the cosines to exponentials, but how can I do this is the series consists only of cosines? How can I use the formula without the i sin(θ) terms? It seems that I can't substitute for the formula then... Hmm...
If anybody knows any tricks or guidance, it would be greatly appreciated! Thanks in advance
- Leo
Last edited by a moderator: