- #1
hover
- 343
- 0
Homework Statement
Find dy/dx of this equation -
[tex] y*sec(x)=3x*tan(y) [/tex]
Homework Equations
-product rule
-derivative of sec(x) with respect to x is sec(x)tan(x) i believe
-derivative of tan(x) is sec^2(x) i believe
The Attempt at a Solution
[tex] y*sec(x)=3x*tan(y) [/tex]
[tex] y*sec(x)*tan(x)+sec(x) \frac{dy}{dx}=3x*sec^2(y)\frac{dy}{dx}+3*tan(y)[/tex]
[tex] sec(x)\frac{dy}{dx}-3x*sec^2(x)\frac{dy}{dx}=3*tan(y) -y*sec(x)*tan(x)[/tex]
[tex]\frac{dy}{dx}(sec(x)-3x*sec^2(x))= 3*tan(y) -y*sec(x)*tan(x)[/tex]
[tex]\frac{dy}{dx}= \frac{3*tan(y) -y*sec(x)*tan(x)}{sec(x)-3x*sec^2(y)} [/tex]
That last line is my solution. I do homework online and every time i enter this it says it is wrong. So where am I going wrong?