- #1
kalvin
- 4
- 0
Let $U \subset \Bbb{R}^3$ be open and let $f : U → \Bbb{R}$ be a $C^1$
function. Let$ (a, b, c) \in U$
and suppose that$ f(a, b, c) = 0$ and $D_3f(a, b, c) \ne 0.$ Show there is an open ball$ V \subset \Bbb{R}^2$ containing $(a, b)$ and a $C^1$
function $\phi : V → \Bbb{R}$ such that $\phi(a, b) = c$ and
$f(x, y, \phi(x, y)) = 0$ for all$ (x, y) \in V$ . We call $\phi$ an implicit function determined by $f$ at $(a, b)$.
I know who how to do the proof in R^2 bout proving it for R^3 seems to be a lot trickier, any help
function. Let$ (a, b, c) \in U$
and suppose that$ f(a, b, c) = 0$ and $D_3f(a, b, c) \ne 0.$ Show there is an open ball$ V \subset \Bbb{R}^2$ containing $(a, b)$ and a $C^1$
function $\phi : V → \Bbb{R}$ such that $\phi(a, b) = c$ and
$f(x, y, \phi(x, y)) = 0$ for all$ (x, y) \in V$ . We call $\phi$ an implicit function determined by $f$ at $(a, b)$.
I know who how to do the proof in R^2 bout proving it for R^3 seems to be a lot trickier, any help