- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
Let $y(x)$ be defined implicitly by $G(x,y(x))=0$, where $G$ is a given two-variable function. Show that if $y(x)$ and $G$ are differentiable, then $$\frac{dy}{dx}=-\frac{\frac{\partial{G}}{\partial{x}}}{\frac{\partial{G}}{\partial{y}}} , \text{ if } \frac{\partial{G}}{\partial{y}} \neq 0$$
First of all, what does it mean that $y(x)$ is defined implicitly by $G(x,y(x))=0$ ?? (Wondering) I have done the following:
Let $f(x)=x$. Then $G(x,y(x))=G(f(x), y(x))=H(x)$.
We have that $G(x,y(x))=0 \Rightarrow H(x)=0$.
$H(x)=0 \Rightarrow \frac{H(x)}{dx}=0$
From the chain rule we have the following:
$$\frac{H(x)}{dx}=\frac{\partial{G}}{\partial{f}}\frac{df}{dx}+\frac{\partial{G}}{\partial{y}}\frac{dy}{dx} \\ \Rightarrow 0=\frac{\partial{G}}{\partial{x}}\frac{dx}{dx}+\frac{\partial{G}}{\partial{y}}\frac{dy}{dx} \\ \Rightarrow 0=\frac{\partial{G}}{\partial{x}}+\frac{\partial{G}}{\partial{y}}\frac{dy}{dx} \\ \Rightarrow \frac{\partial{G}}{\partial{y}}\frac{dy}{dx}=-\frac{\partial{G}}{\partial{x}} \\ \overset{ \text{ if } \frac{\partial{G}}{\partial{y}}\ \neq 0 }{\Longrightarrow }\frac{dy}{dx}=-\frac{\frac{\partial{G}}{\partial{x}}}{\frac{\partial{G}}{\partial{y}}}$$
Is this correct ?? Could I improve something ?? Is the substitution $f(x)=x$ necessary?? (Wondering)
Then I have to find a similar formula if $y_1$, $y_2$ are defined implicitly by $$G_1(x, y_1(x), y_2(x))=0 \\ G_2(x, y_1(x), y_2(x))=0$$
I have the following:
From the chain we have the following:
$$\frac{dG_1}{dx}=\frac{\partial{G_1}}{\partial{x}} \frac{dx}{dx}+\frac{\partial{G_1}}{\partial{y_1}} \frac{dy_1}{dx}+\frac{\partial{G_1}}{\partial{y_2}} \frac{dy_2}{dx} \Rightarrow 0=\frac{\partial{G_1}}{\partial{x}} +\frac{\partial{G_1}}{\partial{y_1}} \frac{dy_1}{dx}+\frac{\partial{G_1}}{\partial{y_2}} \frac{dy_2}{dx}$$
Similar, we get $$0=\frac{\partial{G_2}}{\partial{x}} +\frac{\partial{G_2}}{\partial{y_1}} \frac{dy_1}{dx}+\frac{\partial{G_2}}{\partial{y_2}} \frac{dy_2}{dx}$$
Is it correct so far??
How could I continue ?? (Wondering)
Let $y(x)$ be defined implicitly by $G(x,y(x))=0$, where $G$ is a given two-variable function. Show that if $y(x)$ and $G$ are differentiable, then $$\frac{dy}{dx}=-\frac{\frac{\partial{G}}{\partial{x}}}{\frac{\partial{G}}{\partial{y}}} , \text{ if } \frac{\partial{G}}{\partial{y}} \neq 0$$
First of all, what does it mean that $y(x)$ is defined implicitly by $G(x,y(x))=0$ ?? (Wondering) I have done the following:
Let $f(x)=x$. Then $G(x,y(x))=G(f(x), y(x))=H(x)$.
We have that $G(x,y(x))=0 \Rightarrow H(x)=0$.
$H(x)=0 \Rightarrow \frac{H(x)}{dx}=0$
From the chain rule we have the following:
$$\frac{H(x)}{dx}=\frac{\partial{G}}{\partial{f}}\frac{df}{dx}+\frac{\partial{G}}{\partial{y}}\frac{dy}{dx} \\ \Rightarrow 0=\frac{\partial{G}}{\partial{x}}\frac{dx}{dx}+\frac{\partial{G}}{\partial{y}}\frac{dy}{dx} \\ \Rightarrow 0=\frac{\partial{G}}{\partial{x}}+\frac{\partial{G}}{\partial{y}}\frac{dy}{dx} \\ \Rightarrow \frac{\partial{G}}{\partial{y}}\frac{dy}{dx}=-\frac{\partial{G}}{\partial{x}} \\ \overset{ \text{ if } \frac{\partial{G}}{\partial{y}}\ \neq 0 }{\Longrightarrow }\frac{dy}{dx}=-\frac{\frac{\partial{G}}{\partial{x}}}{\frac{\partial{G}}{\partial{y}}}$$
Is this correct ?? Could I improve something ?? Is the substitution $f(x)=x$ necessary?? (Wondering)
Then I have to find a similar formula if $y_1$, $y_2$ are defined implicitly by $$G_1(x, y_1(x), y_2(x))=0 \\ G_2(x, y_1(x), y_2(x))=0$$
I have the following:
From the chain we have the following:
$$\frac{dG_1}{dx}=\frac{\partial{G_1}}{\partial{x}} \frac{dx}{dx}+\frac{\partial{G_1}}{\partial{y_1}} \frac{dy_1}{dx}+\frac{\partial{G_1}}{\partial{y_2}} \frac{dy_2}{dx} \Rightarrow 0=\frac{\partial{G_1}}{\partial{x}} +\frac{\partial{G_1}}{\partial{y_1}} \frac{dy_1}{dx}+\frac{\partial{G_1}}{\partial{y_2}} \frac{dy_2}{dx}$$
Similar, we get $$0=\frac{\partial{G_2}}{\partial{x}} +\frac{\partial{G_2}}{\partial{y_1}} \frac{dy_1}{dx}+\frac{\partial{G_2}}{\partial{y_2}} \frac{dy_2}{dx}$$
Is it correct so far??
How could I continue ?? (Wondering)