- #1
StillNihilist
- 6
- 0
Implicit isomorphism involved in extension/sub fields/structures?
This has been bugging me for a while. I'm pretty sure I'm correct but I'd just like to verify to put my mind at ease. I'd like to know if there is an implicit isomorphism involved when we say, for example, F is a substructure of E, or for something more specific, F is a subfield of E or E is an extension field of of F.
For an obvious example I can say that the complex numbers, C, are an extension field of the real numbers R. Now what I'm thinking when I see that statement is that there is an isomorphism, f, between a subfield of C and R, given by f(a + 0i) = a. That is, R is isomorphic to a subfield of C. If you said R IS a subfield of C, then the difference would be that the elements of R are elements of C.
In every place I look it's simply stated that real numbers are complex numbers and that's that. However, when you get into more abstract stuff like using factor groups to create extension fields then it's not clear at all that the elements of a field ARE elements IN the extension field. For example regarding Kronecker's Theorem, it is said that given a field F then, F[x]/<p(x)> is an extension field of F, where F[x]/<p(x)> is the factor ring of F[x] by <p(x)>, F[x] are the set of polynomials with coefficients from the field F and <p(x)> = {g(x)p(x) : g(x) element of F[x]} is the maximal ideal generated by p(x), an element of F[x]. Thus F[x]/<p(x)> = { f(x) + <p(x)> : f(x) element of F[x] }. Now with all of that said it is clear that a single element of F is not the same thing as an entire set of polynomials. Since the elements of F[x]/<p(x)> are entire sets, it is clear that something does not add up here. Thus it seems like an isomorphism is necessary for the statement to mean anything at all... Say m(a) = a + <p(x)> for all elements a of F. However no source ever explicitly states any sort of isomorphism is going on and refers to F as a SUBfield of F[x]/<p(x)>, when the elements of F by themselves are not entire sets of polynomials. It's like saying that 2 = { f(x) + p(x)g(x) : f(x), g(x) elements of R[x] the set of polynomials with real coefficients }, it does not make any sense, yet I keep seeing it.
Why is there no source that will simply explicitly state that there is an isomorphism going on? Is there a reason to try to ninja stuff to purposely make it more confusing?
Any clarification is extremely appreciated. Thank you for your time and have a good day.
This has been bugging me for a while. I'm pretty sure I'm correct but I'd just like to verify to put my mind at ease. I'd like to know if there is an implicit isomorphism involved when we say, for example, F is a substructure of E, or for something more specific, F is a subfield of E or E is an extension field of of F.
For an obvious example I can say that the complex numbers, C, are an extension field of the real numbers R. Now what I'm thinking when I see that statement is that there is an isomorphism, f, between a subfield of C and R, given by f(a + 0i) = a. That is, R is isomorphic to a subfield of C. If you said R IS a subfield of C, then the difference would be that the elements of R are elements of C.
In every place I look it's simply stated that real numbers are complex numbers and that's that. However, when you get into more abstract stuff like using factor groups to create extension fields then it's not clear at all that the elements of a field ARE elements IN the extension field. For example regarding Kronecker's Theorem, it is said that given a field F then, F[x]/<p(x)> is an extension field of F, where F[x]/<p(x)> is the factor ring of F[x] by <p(x)>, F[x] are the set of polynomials with coefficients from the field F and <p(x)> = {g(x)p(x) : g(x) element of F[x]} is the maximal ideal generated by p(x), an element of F[x]. Thus F[x]/<p(x)> = { f(x) + <p(x)> : f(x) element of F[x] }. Now with all of that said it is clear that a single element of F is not the same thing as an entire set of polynomials. Since the elements of F[x]/<p(x)> are entire sets, it is clear that something does not add up here. Thus it seems like an isomorphism is necessary for the statement to mean anything at all... Say m(a) = a + <p(x)> for all elements a of F. However no source ever explicitly states any sort of isomorphism is going on and refers to F as a SUBfield of F[x]/<p(x)>, when the elements of F by themselves are not entire sets of polynomials. It's like saying that 2 = { f(x) + p(x)g(x) : f(x), g(x) elements of R[x] the set of polynomials with real coefficients }, it does not make any sense, yet I keep seeing it.
Why is there no source that will simply explicitly state that there is an isomorphism going on? Is there a reason to try to ninja stuff to purposely make it more confusing?
Any clarification is extremely appreciated. Thank you for your time and have a good day.