Importance of "A Mathematical Theory of Communication"

AI Thread Summary
"A Mathematical Theory of Communication" is crucial as it introduces the concept of entropy in both mathematics and physics, serving as a measure of disorder. This paper lays the groundwork for information theory, allowing for the characterization of uncertainties in complex systems. Shannon's definition of entropy is pivotal in managing multiple bit and particle systems. The discussion highlights its foundational role in connecting statistical mechanics and information theory. Understanding this paper is essential for grasping the interplay between these fields.
Arman777
Insights Author
Gold Member
Messages
2,163
Reaction score
191
I am not sure this is the right section to ask this question, but here it goes. So, I was studying Stat. Physics and I came across this paper, A Mathematical Theory of Communication. What it's so important about this paper?
 
Mathematics news on Phys.org
Arman777 said:
I am not sure this is the right section to ask this question, but here it goes. So, I was studying Stat. Physics and I came across this paper, A Mathematical Theory of Communication. What it's so important about this paper?
I would say it is the beginning of entropy in mathematics and physics as a measure for the disorder. Both subjects use Shannon's definition of entropy to characterize uncertainties in multiple bit / particle systems. It makes such systems manageable.
 
It’s one of the foundational papers of information theory.

@vanhees71 has recommended the following for the information theory approach to statistical mechanics

vanhees71 said:
A. Katz, Principles of Statistical Mechanics, W. H. Freeman
 
  • Like
Likes vanhees71 and dextercioby
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Back
Top