- #1
Dustinsfl
- 2,281
- 5
Given this:
$$
\int_0^{\infty}\frac{x^2}{x^6 + 1}dx = \frac{\pi}{6}
$$
Can I do this:
$$
\int_0^{\infty}\frac{x^2}{x^6 + 1}dx = \frac{1}{2}\int_{-\infty}^{\infty}\frac{x^2}{x^6 + 1}dx
$$
and solve the integral like this
$$
\int_{-\infty}^{\infty}\frac{x^2}{x^4 + 1}dx = 2i\pi\sum_{z \ \text{upper half}}\text{Res}_{z}f = \frac{\pi\sqrt{2}}{2}
$$
$$
\int_0^{\infty}\frac{x^2}{x^6 + 1}dx = \frac{\pi}{6}
$$
Can I do this:
$$
\int_0^{\infty}\frac{x^2}{x^6 + 1}dx = \frac{1}{2}\int_{-\infty}^{\infty}\frac{x^2}{x^6 + 1}dx
$$
and solve the integral like this
$$
\int_{-\infty}^{\infty}\frac{x^2}{x^4 + 1}dx = 2i\pi\sum_{z \ \text{upper half}}\text{Res}_{z}f = \frac{\pi\sqrt{2}}{2}
$$