Improper Integral Convergence & Divergence

In summary, the given improper integral \(\displaystyle\int^{\infty}_{0} \frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)}\) can be shown to converge or diverge based on three cases: when \(\beta<0\), when \(\beta>0\) and \(\alpha+1<0\), and when \(\beta>0\) and \(\alpha+1>0\). In the first case, the integral diverges, while in the second and third cases, it converges. The convergence of the integral in the second case is dependent on the convergence of another integral, while in the third case, it can be shown to diver
  • #1
Also sprach Zarathustra
43
0
When the following improper integral converges? When it diverges? $$ \int^{\infty}_{0} \frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)} $$
 
Mathematics news on Phys.org
  • #2
Also sprach Zarathustra said:
When the following improper integral converges? When it diverges?

$$ \int^{\infty}_{0} \frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)} $$

Hi Also sprach Zarathustra,

\[\int^{\infty}_{0} \frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)}\]

We shall use the Limit Comparison Test to determine the convergence/divergence of this improper integral.

Let, \(\displaystyle f(x)=\frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)} \mbox{ and }g(x)=x^{\alpha}\). It is clear that both \(f(x)\mbox{ and }g(x)\) are positive for all \(x>0\).

Case 1: When \(\mathbf{\beta<0}\)

\[\displaystyle\lim_{x\rightarrow\infty}\frac{f(x)}{g(x)}=\lim_{x\rightarrow\infty}\frac{1}{1+x^{\beta}\sin^2(x)}=1\]

It is clear that, \(\displaystyle\int_{0}^{\infty}x^{\alpha}\,dx\) diverges for each \(\alpha\in\Re\)

\[\therefore\displaystyle\int^{\infty}_{0} \frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)}\mbox{ diverges when }\beta<0\]

Case 2: When \(\mathbf{\beta>0\mbox{ and }\alpha+1<0}\)

\[\int^{\infty}_{0} \frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)}=\int^{1}_{0} \frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)}+\int^{ \infty}_{1} \frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)}\]

Since \(\displaystyle\int^{1}_{0} \frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)}\) is a proper integral, converge/divergence of \(\displaystyle\int^{\infty}_{0} \frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)}\) depends on the convergence/divergence of \(\displaystyle\int^{\infty}_{1} \frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)}\)

\[\displaystyle\lim_{x\rightarrow\infty}\frac{f(x)}{g(x)}=\lim_{x\rightarrow\infty}\frac{1}{1+x^{\beta}\sin^2(x)}=0\]

\(\displaystyle\int_{1}^{\infty}x^{\alpha}\,dx=-\frac{1}{\alpha+1}\mbox{ for each }\alpha+1<0\)

\[\therefore\int^{\infty}_{1}\frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)}\mbox{ converges when }\beta>0\mbox{ and }\alpha+1<0\]

\[\Rightarrow\int^{\infty}_{0}\frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)}\mbox{ converges when }\beta>0\mbox{ and }\alpha+1<0\]

Case 3: When \(\mathbf{\beta>0\mbox{ and }\alpha+1>0}\)

For this case I need a little bit of help from the Wolfram Integrator. :)

It could be shown that, \(\displaystyle \frac{x^{ \alpha}}{1+x^{\beta}\sin^2(x)}>\frac{x^{ \alpha}}{1+x^{\beta}}\mbox{ for }x>0\,.\)

For \(\displaystyle\int\frac{x^{\alpha}dx}{1+x^{\beta}}\) the Wolfram Integrator gives,

\[\displaystyle\int\frac{x^{\alpha}dx}{1+x^{\beta}}=\frac{x^{ \alpha+1}\,_2F_1\left(1,\frac{ \alpha+1}{ \beta},\frac{\alpha+1}{ \beta}+1,-x^{\beta}\right)}{\alpha+1}\]

Where \(\,_2F_1\) is the Hypergeometric series.

\[\Rightarrow\int^{\infty}_{0} \frac{x^{\alpha}dx}{1+x^{\beta}}=\lim_{x \rightarrow\infty}\left\{\frac{x^{ \alpha+1}\,_2F_1\left(1,\frac{ \alpha+1}{ \beta},\frac{\alpha+1}{ \beta}+1,-x^{\beta}\right)}{\alpha+1}\right\}-\left\{\frac{x^{ \alpha+1}\,_2F_1\left(1,\frac{ \alpha+1}{ \beta},\frac{\alpha+1}{ \beta}+1,0\right)}{\alpha+1}\right\}\]

Since the \(x^{ \alpha+1}\) term explodes as \(x\rightarrow\infty\) the first term in the right hand side diverges. The radius of convergence of the Hypergeometric series is 1 and therefore the second term has a finite value. Hence, \(\displaystyle\int^{\infty}_{0} \frac{x^{\alpha}dx}{1+x^{\beta}}\mbox{ should diverge.}\)

\[\therefore\displaystyle\int^{\infty}_{0} \frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)}\mbox{ diverges when }\beta>0\mbox{ and }\alpha+1>0\]
 
Last edited:
  • #3
I was trying to solve the integral that seemed unsolvable , actually I didn't read the
question :eek:
 

FAQ: Improper Integral Convergence & Divergence

What is an improper integral?

An improper integral is an integral where one or both of the limits of integration are infinite, or where the integrand function is not defined at some point within the interval of integration.

How do you determine if an improper integral converges or diverges?

To determine convergence or divergence of an improper integral, you must evaluate it as a limit. If the limit exists and is finite, the integral converges. If the limit does not exist or is infinite, the integral diverges.

What is the difference between a Type 1 and Type 2 improper integral?

A Type 1 improper integral has one or both of its limits of integration as infinite, while a Type 2 improper integral has an integrand function that is unbounded at some point within the interval of integration.

How do you handle discontinuities in improper integrals?

If the discontinuity is at one of the limits of integration, the integral can be split into two separate integrals and evaluated as limits. If the discontinuity is within the interval of integration, the integral can be evaluated as the sum of two integrals with different intervals of integration, one on either side of the discontinuity.

Can improper integrals have both infinite limits of integration and unbounded integrand functions?

Yes, an improper integral can have both infinite limits of integration and an unbounded integrand function. In this case, the integral must be evaluated as the sum of two integrals, one with infinite limits and one with a bounded integrand function, to determine convergence or divergence.

Back
Top