- #1
karush
Gold Member
MHB
- 3,269
- 5
316 Ratio Test
$\tiny{11.6.(4) } $
$$L=\sum_{n=1}^{\infty}\dfrac{\ln(n+1)}{n+1} $$
using the Ratio Test
$$L=\displaystyle\lim_{n \to \infty}
\left|\dfrac{a_{n+1}}{a_n}\right|
=\lim_{n \to \infty}\dfrac{\ln((n+1)+1)}{((n+1)+1)}
=\lim_{n \to \infty}\dfrac{\ln((n+2)}{n+2}=0$$
thus $L<1$ convergent
Ok I think this is correct but the final limit I did via W|A not sure why it is 0
$\tiny{11.6.(4) } $
$$L=\sum_{n=1}^{\infty}\dfrac{\ln(n+1)}{n+1} $$
using the Ratio Test
$$L=\displaystyle\lim_{n \to \infty}
\left|\dfrac{a_{n+1}}{a_n}\right|
=\lim_{n \to \infty}\dfrac{\ln((n+1)+1)}{((n+1)+1)}
=\lim_{n \to \infty}\dfrac{\ln((n+2)}{n+2}=0$$
thus $L<1$ convergent
Ok I think this is correct but the final limit I did via W|A not sure why it is 0
Last edited: