MHB Improper integrals (Comparison Test)

AI Thread Summary
The discussion focuses on determining the convergence of three improper integrals using the Comparison Test. For the first integral, it is established that it converges if p<1, as both parts of the integral are shown to be convergent. The second integral diverges due to the behavior near x=1, where it approaches infinity, confirmed by the Comparison Test with a known divergent integral. The third integral's convergence is not addressed in detail, but participants express a need for assistance in solving it. Overall, the thread emphasizes the application of the Comparison Test for analyzing improper integrals.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
I quote a question from Yahoo! Answers

Use the comparison test to find out whether or not the following improper integral exist(converge)?
1)integral(upper bound:pi lower bound:0)1/((sinx)^p) dx,p<1
2)integral(upper bound:1 lower bound:0) 1/(1-x^2) dx
3)integral(upper bound:infinity lower bound:2) 1/(1-x^2) dx
I have given a link to the topic there so the OP can see my response.
 
Mathematics news on Phys.org
$(1)$ $I_1=\displaystyle\int_0^{\pi/2}\frac{dx}{\sin^px}$ is improper at $x=0$ and $I_2=\displaystyle\int_{\pi/2}^{\pi}\frac{dx}{\sin^px}$ is improper at $x=\pi$. Then, $I=\displaystyle\int_0^{\pi}\frac{dx}{\sin^px}$ is convergent iff $I_1$ and $I_2$ are both convergent. If $p<1$, $h(t)=t^p$ is decreasing on $(0,1]$ so if $x\in(0,1]$: $$0<\sin x<x\Rightarrow 0<x^p<\sin^p x\Rightarrow 0<\frac{1}{\sin^p x}<\frac{1}{x^p}$$ According to a well known property $\displaystyle\int_0^{1}\frac{dx}{x^p} $ is convergent, so $\displaystyle\int_0^{1}\frac{dx}{\sin^px}$ is also convergent. But $$I_1=\displaystyle\int_0^{1}\frac{dx}{\sin^px}+ \displaystyle\int_1^{\pi/2}\frac{dx}{\sin^px}$$ and $f(x)=1/\sin^p x$ is continuous on $[1,\pi/2]$, so $I_1$ is convergent. With the substitution $t=\pi-x$ we easily verify $I_2=I_1$ that is, $I$ is convergent if $p<1.$

P.S. If someone wants to solve $(2)$ and $(3)$ ...
 
Fernando Revilla said:
$(1)$ $I_1=\displaystyle\int_0^{\pi/2}\frac{dx}{\sin^px}$ is improper at $x=0$ and $I_2=\displaystyle\int_{\pi/2}^{\pi}\frac{dx}{\sin^px}$ is improper at $x=\pi$. Then, $I=\displaystyle\int_0^{\pi}\frac{dx}{\sin^px}$ is convergent iff $I_1$ and $I_2$ are both convergent. If $p<1$, $h(t)=t^p$ is decreasing on $(0,1]$ so if $x\in(0,1]$: $$0<\sin x<x\Rightarrow 0<x^p<\sin^p x\Rightarrow 0<\frac{1}{\sin^p x}<\frac{1}{x^p}$$ According to a well known property $\displaystyle\int_0^{1}\frac{dx}{x^p} $ is convergent, so $\displaystyle\int_0^{1}\frac{dx}{\sin^px}$ is also convergent. But $$I_1=\displaystyle\int_0^{1}\frac{dx}{\sin^px}+ \displaystyle\int_1^{\pi/2}\frac{dx}{\sin^px}$$ and $f(x)=1/\sin^p x$ is continuous on $[1,\pi/2]$, so $I_1$ is convergent. With the substitution $t=\pi-x$ we easily verify $I_2=I_1$ that is, $I$ is convergent if $p<1.$

P.S. If someone wants to solve $(2)$ and $(3)$ ...
thank you,
can you help me with 2 and 3?
 
Fernando Revilla said:
I quote a question from Yahoo! Answers


I have given a link to the topic there so the OP can see my response.

For 2) you wish to determine if [math]\displaystyle \begin{align*} \int_0^1{\frac{1}{1 - x^2}\,dx} \end{align*}[/math] is convergent.

[math]\displaystyle \begin{align*} \int_0^1{\frac{1}{1 - x^2}\,dx} &= \int_0^1{\frac{1}{(1 - x)(1 + x)}\,dx} \\ &= \int_0^1{\frac{1}{2(1 - x)} + \frac{1}{2(1 + x)}\,dx} \\ &= \lim_{\epsilon \to 1^+} \int_0^\epsilon{ \frac{1}{2(1 - x)} + \frac{1}{2(1 + x)}\,dx } \\ &= \lim_{\epsilon \to 1^+} \left[ -\frac{1}{2}\ln{|1 - x|} + \frac{1}{2}\ln{|1 + x|} \right]_0^\epsilon \end{align*}[/math]

Since it should be obvious that this will go to [math]\displaystyle \begin{align*} \infty \end{align*}[/math], the integral is divergent.
 
For all $x\in [0,1)$: $$0\leq 1-x^2=(1+x)(1-x)\leq 2(1-x)\Rightarrow \frac{1}{2(1-x)}\leq \frac{1}{1-x^2}$$ But $\displaystyle\int_0^1\frac{dx}{2(1-x)}=\left[-\frac{\color{red}1}{\color{red}2}\log (1-x)\right]_0^{1}=+\infty$ so, by the Comparison Test $\displaystyle\int_0^1\frac{dx}{1-x^2}$ is divergent.

renyikouniao said:
thank you,
can you help me with 2 and 3?

Please, show some work for 3).
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top