- #1
magnifik
- 360
- 0
i am given the Laplace transform of an impulse response function, as well as its input. i am supposed to find its output.
H(s) = 1/s2 + s + 1
x(t) = sin2(t-1)U(t-1)
what i have done so far is the following:
i know that Y(s) = H(s)X(s) and from this i can easily find y(t)
so i found X(s) since H(s) is already given...this may be wrong
X(s) = 2e-s/s2 + 4
then i found Y(s)
Y(s) = 2e-s/(s2 + s + 1)(s2 + 4)
then i know that y(t) should be 2y(t-1) because of the e-s time shifting
but i am stuck here... is there a better way to solve this problem using Convolution integral or any other way? i know how to do both the partial fractions method and convolution integral but i keep getting stuck. i think i have set up the problem wrong, perhaps in the X(s) solution
H(s) = 1/s2 + s + 1
x(t) = sin2(t-1)U(t-1)
what i have done so far is the following:
i know that Y(s) = H(s)X(s) and from this i can easily find y(t)
so i found X(s) since H(s) is already given...this may be wrong
X(s) = 2e-s/s2 + 4
then i found Y(s)
Y(s) = 2e-s/(s2 + s + 1)(s2 + 4)
then i know that y(t) should be 2y(t-1) because of the e-s time shifting
but i am stuck here... is there a better way to solve this problem using Convolution integral or any other way? i know how to do both the partial fractions method and convolution integral but i keep getting stuck. i think i have set up the problem wrong, perhaps in the X(s) solution