- #1
Portuga
- 56
- 6
- Homework Statement
- Derive the equation of state for an ideal gas that relates pressure, density, and temperature.
- Relevant Equations
- PV = nRT
To solve this problem I used two equations:
$$
PV=nRT,
$$
where ##P## is the pressure, ##V##the volume, ##R##the gas constant, ##T##for temperature and is##n##the number of moles, related to the
mass ##m## and molar mass ##M## by
$$
n=\frac{m}{M}.
$$
It will be also necessary consider the density ##\rho## as
$$
\rho=\frac{m}{V}.
$$
So,
\begin{align}
& PV=\frac{m}{M}RT\nonumber \\
\Rightarrow & \frac{P}{\frac{m}{V}}=\frac{RT}{M}\nonumber \\
\Rightarrow & \frac{P}{\rho}=\frac{RT}{M}.\nonumber
\end{align}
When I checked the answer, to my surprise I found
$$
\frac{P}{\rho}=RT.
$$
I am so confused because this is so simple and I have no idea about
what to do with the molar mass##M##to get the answer provided by the author.
$$
PV=nRT,
$$
where ##P## is the pressure, ##V##the volume, ##R##the gas constant, ##T##for temperature and is##n##the number of moles, related to the
mass ##m## and molar mass ##M## by
$$
n=\frac{m}{M}.
$$
It will be also necessary consider the density ##\rho## as
$$
\rho=\frac{m}{V}.
$$
So,
\begin{align}
& PV=\frac{m}{M}RT\nonumber \\
\Rightarrow & \frac{P}{\frac{m}{V}}=\frac{RT}{M}\nonumber \\
\Rightarrow & \frac{P}{\rho}=\frac{RT}{M}.\nonumber
\end{align}
When I checked the answer, to my surprise I found
$$
\frac{P}{\rho}=RT.
$$
I am so confused because this is so simple and I have no idea about
what to do with the molar mass##M##to get the answer provided by the author.