Incompatibility between ideal gas equations of state

AI Thread Summary
The discussion centers around the derivation of the ideal gas equation relating pressure, density, and temperature. The user initially applies the ideal gas law and definitions of moles and density but becomes confused when the final equation simplifies to P/ρ = RT, questioning the role of molar mass. It is clarified that in the final equation, ρ represents molar density (n/V) rather than mass density (m/V). This distinction resolves the confusion regarding the application of molar mass in the context of the ideal gas law. Understanding this difference is crucial for correctly interpreting the equation of state for an ideal gas.
Portuga
Messages
56
Reaction score
6
Homework Statement
Derive the equation of state for an ideal gas that relates pressure, density, and temperature.
Relevant Equations
PV = nRT
To solve this problem I used two equations:
$$
PV=nRT,
$$
where ##P## is the pressure, ##V##the volume, ##R##the gas constant, ##T##for temperature and is##n##the number of moles, related to the
mass ##m## and molar mass ##M## by
$$
n=\frac{m}{M}.
$$
It will be also necessary consider the density ##\rho## as
$$
\rho=\frac{m}{V}.
$$

So,
\begin{align}
& PV=\frac{m}{M}RT\nonumber \\
\Rightarrow & \frac{P}{\frac{m}{V}}=\frac{RT}{M}\nonumber \\
\Rightarrow & \frac{P}{\rho}=\frac{RT}{M}.\nonumber
\end{align}
When I checked the answer, to my surprise I found
$$
\frac{P}{\rho}=RT.
$$
I am so confused because this is so simple and I have no idea about
what to do with the molar mass##M##to get the answer provided by the author.
 
Physics news on Phys.org
Portuga said:
Homework Statement:: Derive the equation of state for an ideal gas that relates pressure, density, and temperature.
Relevant Equations:: PV = nRT

To solve this problem I used two equations:
$$
PV=nRT,
$$
where ##P## is the pressure, ##V##the volume, ##R##the gas constant, ##T##for temperature and is##n##the number of moles, related to the
mass ##m## and molar mass ##M## by
$$
n=\frac{m}{M}.
$$
It will be also necessary consider the density ##\rho## as
$$
\rho=\frac{m}{V}.
$$

So,
\begin{align}
& PV=\frac{m}{M}RT\nonumber \\
\Rightarrow & \frac{P}{\frac{m}{V}}=\frac{RT}{M}\nonumber \\
\Rightarrow & \frac{P}{\rho}=\frac{RT}{M}.\nonumber
\end{align}
When I checked the answer, to my surprise I found
$$
\frac{P}{\rho}=RT.
$$
I am so confused because this is so simple and I have no idea about
what to do with the molar mass##M##to get the answer provided by the author.
In that final equation, ##\rho## is the molar density n/V, not the mass density m/V.
 
  • Love
  • Like
Likes MatinSAR and Portuga
Thank u very much!
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top