- #1
Asphyxiated
- 264
- 0
Homework Statement
[tex] \int \frac {2+z^{-1}}{z^{2}} dz [/tex]
The Attempt at a Solution
Let:
[tex] u = 2 +z^{-1} [/tex]
[tex] du = -z^{-2} dz [/tex]
[tex] dz = -z^{2} du [/tex]
so now its
[tex] \int \frac {u}{z^{2}} (-z^{2}) du [/tex]
[tex] \int \frac {(u)(-z^{2})}{z^{2}} du [/tex]
[tex] \int (u)(-1) du [/tex]
and then the antiderivative of u*(-1) is
[tex] -\frac{1}{2}(2+z^{-1})^{2} + C [/tex]
right? The answer in the book is:
[tex] -2z^{-1}-\frac{1}{2}z^{-2} + C [/tex]
I don't see anywhere that I went wrong...