- #1
Richard27182
- 4
- 0
Homework Statement
Let [tex](A_n : n\in \mathbb{N})[/tex] be a sequence of events in a probability space. Show that the events [tex]A_n[/tex] are independent if and only if the [tex]\sigma[/tex]-algebras [tex]\sigma(A_n)=\{\emptyset, A_n, A_n^c, \Omega\}[/tex] are independent.
Homework Equations
For [tex]\sigma[/tex]-algebras [tex]\mathcal{A}_i \subseteq \mathcal{F}[/tex] to be independent, we need that if [tex]A_i \in \mathcal{A}_i\forall i[/tex], then the [tex]A_i[/tex] must be independent.
For events [tex]A_i:i\in I[/tex] to be independent, we need that , for any finite subset [tex]J\subseteq I[/tex]:
[tex]\mathbb{P}(\bigcap_{i\in J} A_i )=\prod_{i\in J} \mathbb{P}(A_i )[/tex]
The Attempt at a Solution
So first assume that the [tex]\sigma[/tex]-algebras are independent. Now [tex]A_i \in \sigma(A_i) \forall i[/tex], so the [tex]A_i[/tex] must be independent.
Now assume that the events [tex]A_i[/tex] are independent. Now take events [tex]B_i[/tex] such that [tex]B_i \in A_i \forall i[/tex] Now we need to check that for any finite subset [tex]J \subseteq \mathbb{N}[/tex], that we have
[tex]\mathbb{P}(\bigcap_{i\in J}B_i )=\prod_{i \in J} \mathbb{P}(B_i )[/tex]
Now if we have that for some [tex]i \in J,B_i =\emptyset[/tex], this is immediate (both sides are zero)
If we have that for some [tex]i\in J,B_i =\Omega[/tex], it reduces to the case where [tex]\nexists i \in J[/tex] s.t. [tex]B_i=\Omega[/tex]
So we are left with three cases to check:
1. [tex]B_i =A_i \forall i \in J[/tex]
2. [tex]B_i =A_i^c \forall i \in J[/tex]
3. [tex]B_i =A_i[/tex] for some [tex]i \in J[/tex] and [tex]B_i =A_i^c[/tex] for the rest of [tex]i\in J[/tex]
Case 1 follows immediately from the independence of the [tex]A_i[/tex]
Case 2 Labelling the sets in [tex]J[/tex] from [tex]1[/tex] to [tex]n[/tex]
[tex]
\mathbb{P}(\bigcap_{i=1}^{n}A_i^c)=\mathbb{P}((\bigcup_{i=1}^{n}A_i )^c)\text{(De Morgan's law)}[/tex]
[tex]=1-\mathbb{P}(\bigcup_{i=1}^{n} A_i)[/tex]
[tex]=1-\sum_{1}^{n}\mathbb{P}(A_i)+\sum_{i,j:1\le i<J\le n}\mathbb{P}(A_i \cap A_j)+...-(-1)^{n-1}\mathbb{P}(\bigcap_{i=1}^{n}A_i) \text{(by Inclusion-Exclusion)}[/tex]
[tex]=1-\sum_{i=1}^{n}\mathbb{P}(A_i)+\sum_{i,j:1\le i<J\le n}\mathbb{P}(A_i)\mathbb{P}( A_j)+...-(-1)^{n-1}\prod_{i-1}^{n}\mathbb{P}(A_i) \text{(by independence of} A_i )[/tex]
[tex]=\prod_{i=1}^{n}(1-\mathbb{P}(A_i))[/tex]
[tex]=\prod_{i=1}^{n}\mathbb{P}(A_i^c)
[/tex]
as required.
So all that remains is to check case 3. That is, we need to show that if (possibly relabelling the [tex]A_i[/tex]) [tex]B_i =A_i \text{ } i=1,...,r[/tex]
[tex]B_i=A_i^c\text{ } i=r+1,...,n[/tex] then
[tex]\mathbb{P}(\bigcap_{i=1}^{n}B_i}=\prod_{i=1}^{n}\mathbb{P}(B_i)[/tex]
[tex]\mathbb{P}(\bigcap_{i=1}^{n}B_{i})=\mathbb{P}((\bigcap_{i=1}^{r}B_i )\cap (\bigcap_{i=r+1}^{n}B_i ))
[/tex]
Unfortunately, I've got stuck here and am unable to make any further progress.