- #1
George444fg
- 26
- 4
- TL;DR Summary
- Partition Function of a separable hamiltonian
I am trying to calculate the partition function of the system of two completely decoupled systems. Probability-wise, the decoupled nature means that the PDF is the product of the PDF of each subsystem. I just wanted to be sure that it would translate into:
$$
H = \sum_{k_i, s_i}e^{H_s(s_i)}e^{H_k(k_i)} = \sum_{k_i}(\sum_{s_i}e^{H_s(s_i)})e^{H_k(k_i)} = \sum_{s_i}e^{H_s(s_i)}\sum_{k_i}e^{H_k(k_i)} = Tr(e^{H_s(s_i)})*Tr(e^{H_k(k_i)})
$$
I know the question seems trivial, but I got a bit confused, and I would like to be 100% sure. Thank you for any help you can provide
$$
H = \sum_{k_i, s_i}e^{H_s(s_i)}e^{H_k(k_i)} = \sum_{k_i}(\sum_{s_i}e^{H_s(s_i)})e^{H_k(k_i)} = \sum_{s_i}e^{H_s(s_i)}\sum_{k_i}e^{H_k(k_i)} = Tr(e^{H_s(s_i)})*Tr(e^{H_k(k_i)})
$$
I know the question seems trivial, but I got a bit confused, and I would like to be 100% sure. Thank you for any help you can provide
Last edited by a moderator: