- #1
EmilyRuck
- 136
- 6
In a source-free, isotropic, linear medium, Maxwell's equations can be rewritten as follows:
[itex]\nabla \cdot \mathbf{E} = 0[/itex]
[itex]\nabla \cdot \mathbf{H} = 0[/itex]
[itex]\nabla \times \mathbf{E} = -j \omega \mu \mathbf{H}[/itex]
[itex]\nabla \times \mathbf{E} = j \omega \epsilon \mathbf{E}[/itex]
If we are looking for a wave solution, traveling along the [itex]z[/itex] direction, with [itex]k = k_z = \beta[/itex], that means
[itex]\displaystyle \frac{\partial}{\partial z} = e^{-j \beta z}[/itex]
and the above equations (after some steps) become[itex]\displaystyle \frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} = j \beta E_z[/itex]
[itex]\displaystyle \frac{\partial H_x}{\partial x} + \frac{\partial H_y}{\partial y} = j \beta H_z[/itex]
[itex]E_x = - j \displaystyle \frac{1}{\omega \epsilon} \frac{\partial H_z}{\partial y} + \displaystyle \frac{\beta}{\omega \epsilon} H_y[/itex]
[itex]E_y = - \displaystyle \frac{\beta}{\omega \epsilon} H_x + j \displaystyle \frac{1}{\omega \epsilon} \frac{\partial H_z}{\partial x}[/itex]
[itex]E_z = - j \displaystyle \frac{1}{\omega \epsilon} \frac{\partial H_y}{\partial x} + j \displaystyle \frac{1}{\omega \epsilon} \frac{\partial H_x}{\partial y}[/itex]
[itex]H_x = j \displaystyle \frac{1}{\omega \mu} \frac{\partial E_z}{\partial y} - \displaystyle \frac{\beta}{\omega \mu} E_y[/itex]
[itex]H_y = \displaystyle \frac{\beta}{\omega \mu} E_x - j \displaystyle \frac{1}{\omega \mu} \frac{\partial E_z}{\partial x}[/itex]
[itex]H_z = j \displaystyle \frac{1}{\omega \mu} \frac{\partial E_y}{\partial x} - j \displaystyle \frac{1}{\omega \mu} \frac{\partial E_x}{\partial y}[/itex]
It should be possible to express the transverse field components as functions of the longitudinal field components:
[itex]E_x = E_x (E_z, H_z)[/itex]
[itex]E_y = E_y (E_z, H_z)[/itex]
[itex]H_x = H_x (E_z, H_z)[/itex]
[itex]H_y = H_y (E_z, H_z)[/itex]
Which is equivalent to state that just two scalar functions [itex]E_z = f(x,y)e^{-j \beta z}[/itex] and [itex]H_z = g(x,y)e^{-j \beta z}[/itex] are actually independent. But how could it be proved? It is not evident from the equations I wrote above: they show instead that [itex]E_z, H_z[/itex] appear to be functions of [itex]E_x, E_y, H_x, H_y[/itex].
The only link I could find is http://my.ece.ucsb.edu/York/Bobsclass/201B/W01/potentials.pdf: at the bottom of page 11, it shows that all the fields can be expressed in terms of two scalar functions. But it is not a direct approach, because it uses the Hertz Vector potentials.
Is there a direct approach to prove that all the 6 field components are function of just 2 of them?
[itex]\nabla \cdot \mathbf{E} = 0[/itex]
[itex]\nabla \cdot \mathbf{H} = 0[/itex]
[itex]\nabla \times \mathbf{E} = -j \omega \mu \mathbf{H}[/itex]
[itex]\nabla \times \mathbf{E} = j \omega \epsilon \mathbf{E}[/itex]
If we are looking for a wave solution, traveling along the [itex]z[/itex] direction, with [itex]k = k_z = \beta[/itex], that means
[itex]\displaystyle \frac{\partial}{\partial z} = e^{-j \beta z}[/itex]
and the above equations (after some steps) become[itex]\displaystyle \frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} = j \beta E_z[/itex]
[itex]\displaystyle \frac{\partial H_x}{\partial x} + \frac{\partial H_y}{\partial y} = j \beta H_z[/itex]
[itex]E_x = - j \displaystyle \frac{1}{\omega \epsilon} \frac{\partial H_z}{\partial y} + \displaystyle \frac{\beta}{\omega \epsilon} H_y[/itex]
[itex]E_y = - \displaystyle \frac{\beta}{\omega \epsilon} H_x + j \displaystyle \frac{1}{\omega \epsilon} \frac{\partial H_z}{\partial x}[/itex]
[itex]E_z = - j \displaystyle \frac{1}{\omega \epsilon} \frac{\partial H_y}{\partial x} + j \displaystyle \frac{1}{\omega \epsilon} \frac{\partial H_x}{\partial y}[/itex]
[itex]H_x = j \displaystyle \frac{1}{\omega \mu} \frac{\partial E_z}{\partial y} - \displaystyle \frac{\beta}{\omega \mu} E_y[/itex]
[itex]H_y = \displaystyle \frac{\beta}{\omega \mu} E_x - j \displaystyle \frac{1}{\omega \mu} \frac{\partial E_z}{\partial x}[/itex]
[itex]H_z = j \displaystyle \frac{1}{\omega \mu} \frac{\partial E_y}{\partial x} - j \displaystyle \frac{1}{\omega \mu} \frac{\partial E_x}{\partial y}[/itex]
It should be possible to express the transverse field components as functions of the longitudinal field components:
[itex]E_x = E_x (E_z, H_z)[/itex]
[itex]E_y = E_y (E_z, H_z)[/itex]
[itex]H_x = H_x (E_z, H_z)[/itex]
[itex]H_y = H_y (E_z, H_z)[/itex]
Which is equivalent to state that just two scalar functions [itex]E_z = f(x,y)e^{-j \beta z}[/itex] and [itex]H_z = g(x,y)e^{-j \beta z}[/itex] are actually independent. But how could it be proved? It is not evident from the equations I wrote above: they show instead that [itex]E_z, H_z[/itex] appear to be functions of [itex]E_x, E_y, H_x, H_y[/itex].
The only link I could find is http://my.ece.ucsb.edu/York/Bobsclass/201B/W01/potentials.pdf: at the bottom of page 11, it shows that all the fields can be expressed in terms of two scalar functions. But it is not a direct approach, because it uses the Hertz Vector potentials.
Is there a direct approach to prove that all the 6 field components are function of just 2 of them?