- #1
PFuser1232
- 479
- 20
Here's a list of all the indeterminate forms I'm familiar with:
##\frac{0}{0}##, ##\frac{\infty}{\infty}##, ##0⋅\infty##, ##\infty - \infty##, ##0^0##, ##1^{\infty}##, ##\infty^0##
Suppose we want to evaluate the limit:
$$\lim_{x→0} x^2 \cos{\frac{1}{x}}$$
We can find the value of this limit by applying the squeeze theorem. The limit would otherwise be indeterminate; if we plug in ##x = 0##, we get:
$$0⋅\cos{\frac{1}{0}}$$
Under what category does this indeterminate form lie?
##\frac{0}{0}##, ##\frac{\infty}{\infty}##, ##0⋅\infty##, ##\infty - \infty##, ##0^0##, ##1^{\infty}##, ##\infty^0##
Suppose we want to evaluate the limit:
$$\lim_{x→0} x^2 \cos{\frac{1}{x}}$$
We can find the value of this limit by applying the squeeze theorem. The limit would otherwise be indeterminate; if we plug in ##x = 0##, we get:
$$0⋅\cos{\frac{1}{0}}$$
Under what category does this indeterminate form lie?