- #1
poetryphysics
- 4
- 2
Hi all, just had a question about tensor/matrix notation with the inverse Lorentz transform. The topic was covered well here, but I’m still having trouble relating this with an equation in Schutz Intro to GR...
So I can use the following to get an equation for the inverse:
[tex]x^{\overline{\mu}}x_{\overline{\mu}}=\Lambda^{\overline{\mu}}_{\;\alpha}x^{\alpha}\Lambda^{\beta}_{\;\overline{\mu}}x_{\beta}[/tex]
And therefore
[tex]\Lambda^{\beta}_{\;\overline{\mu}}\Lambda^{\overline{\mu}}_{\;\alpha}=\delta^{\beta}_{\;\alpha}[/tex]
This equation is just the one in ch2 from Schutz. But I can just as well reason as follows:
[tex]x^{\overline{\mu}}x_{\overline{\mu}}=\eta_{\overline{\mu}\overline{\nu}}x^{\overline{\mu}}x^{\overline{\nu}}=\eta_{\overline{\mu}\overline{\nu}}\Lambda^{\overline{\mu}}_{\;\alpha}x^{\alpha}\Lambda^{\overline{\nu}}_{\;\beta}x^{\beta}=\Lambda^{\overline{\mu}}_{\;\alpha}x^{\alpha}\Lambda_{\overline{\mu}\beta}x^{\beta}[/tex]
And therefore
[tex]\Lambda_{\overline{\mu}\beta}\Lambda^{\overline{\mu}}_{\;\alpha}=\eta_{\beta\alpha}[/tex]
Or
[tex]\Lambda_{\overline{\mu}}^{\;\ \beta}\Lambda^{\overline{\mu}}_{\;\alpha}=\delta^{\beta}_{\;\alpha}[/tex]
Taken together, we seem to have
[tex]\Lambda_{\overline{\mu}}^{\;\ \beta}=\Lambda^{\beta}_{\;\overline{\mu}}[/tex]
Is this correct? It seems wrong to me, and it seems that I might’ve confused my tensor and matrix indices, I’m just not sure how...
So I can use the following to get an equation for the inverse:
[tex]x^{\overline{\mu}}x_{\overline{\mu}}=\Lambda^{\overline{\mu}}_{\;\alpha}x^{\alpha}\Lambda^{\beta}_{\;\overline{\mu}}x_{\beta}[/tex]
And therefore
[tex]\Lambda^{\beta}_{\;\overline{\mu}}\Lambda^{\overline{\mu}}_{\;\alpha}=\delta^{\beta}_{\;\alpha}[/tex]
This equation is just the one in ch2 from Schutz. But I can just as well reason as follows:
[tex]x^{\overline{\mu}}x_{\overline{\mu}}=\eta_{\overline{\mu}\overline{\nu}}x^{\overline{\mu}}x^{\overline{\nu}}=\eta_{\overline{\mu}\overline{\nu}}\Lambda^{\overline{\mu}}_{\;\alpha}x^{\alpha}\Lambda^{\overline{\nu}}_{\;\beta}x^{\beta}=\Lambda^{\overline{\mu}}_{\;\alpha}x^{\alpha}\Lambda_{\overline{\mu}\beta}x^{\beta}[/tex]
And therefore
[tex]\Lambda_{\overline{\mu}\beta}\Lambda^{\overline{\mu}}_{\;\alpha}=\eta_{\beta\alpha}[/tex]
Or
[tex]\Lambda_{\overline{\mu}}^{\;\ \beta}\Lambda^{\overline{\mu}}_{\;\alpha}=\delta^{\beta}_{\;\alpha}[/tex]
Taken together, we seem to have
[tex]\Lambda_{\overline{\mu}}^{\;\ \beta}=\Lambda^{\beta}_{\;\overline{\mu}}[/tex]
Is this correct? It seems wrong to me, and it seems that I might’ve confused my tensor and matrix indices, I’m just not sure how...