- #1
Dustinsfl
- 2,281
- 5
Using indicial notation, I am trying to show that $\mathbf{v}\cdot\mathbf{v} = a^2b^2\sin^2\theta$ where $ \mathbf{v} = \mathbf{a}\times\mathbf{b}$ and $\mathbf{v}_i\hat{\mathbf{e}}_i = a_j \hat{\mathbf{e}}_j\times b_j\hat{\mathbf{e}}_k = \varepsilon_{ijk}a_jb_k\hat{\mathbf{e}}_i$.
So
\begin{alignat}{3}
\mathbf{v}\cdot\mathbf{v} & = & \varepsilon_{ijk} a_jb_k\hat{\mathbf{e}}_i\cdot\varepsilon_{ijk}a_jb_k\hat{\mathbf{e}}_i\\
& = &
\end{alignat}
We have to have a kronecker delta since the only surviving terms are when the unit vectors that are dotted with themselves but that is all I have.
So
\begin{alignat}{3}
\mathbf{v}\cdot\mathbf{v} & = & \varepsilon_{ijk} a_jb_k\hat{\mathbf{e}}_i\cdot\varepsilon_{ijk}a_jb_k\hat{\mathbf{e}}_i\\
& = &
\end{alignat}
We have to have a kronecker delta since the only surviving terms are when the unit vectors that are dotted with themselves but that is all I have.
Last edited: