- #1
PhiowPhi
- 203
- 8
When a wire( that has the flow of I) is placed inside a magnetic field(B) experiences the Lorentz force and beings to accelerate in the uniform and constant magnetic field, there is no induced EMF correct? Only when it starts to exist the magnetic field there is change in flux. And there is induced EMF.
If there is still current flowing in the conductor, is there two electric fields now? One from the power source(that creates the potential difference, therefore, current flow) and one that is induced from the change of flux that reduces the applied PD( from its -PD) and by doing so, the applied current?
Also, if the wire was moving in a changing magnetic field, is the Lorentz force responsible for both motion, and induced EMF to reduce current applied to it? It confuses me that the Lorentz force simultaneously accelerates the conductor AND separates the charges to create the electric field, and the potential difference of an opposing EMF.
If there is still current flowing in the conductor, is there two electric fields now? One from the power source(that creates the potential difference, therefore, current flow) and one that is induced from the change of flux that reduces the applied PD( from its -PD) and by doing so, the applied current?
Also, if the wire was moving in a changing magnetic field, is the Lorentz force responsible for both motion, and induced EMF to reduce current applied to it? It confuses me that the Lorentz force simultaneously accelerates the conductor AND separates the charges to create the electric field, and the potential difference of an opposing EMF.