- #1
craigthone
- 59
- 1
We know in Lorentzian signature spacetime, in the case of timelike or spacelike hypersurfaces ##\Sigma## with
\begin{align}
n^\alpha n_\alpha=\epsilon=\pm1
\end{align}
where ##\epsilon=1## for timelike and ##-1## for spacelike. We can define a tensor ## h_{\alpha\beta}## on ##\Sigma## by
\begin{align}
h_{\alpha\beta}=g_{\alpha\beta}-\epsilon n_\alpha n_\beta
\end{align}
What is the corresponding relation for hypersuface in Euclidean signature manifold.
\begin{align}
n^\alpha n_\alpha=\epsilon=\pm1
\end{align}
where ##\epsilon=1## for timelike and ##-1## for spacelike. We can define a tensor ## h_{\alpha\beta}## on ##\Sigma## by
\begin{align}
h_{\alpha\beta}=g_{\alpha\beta}-\epsilon n_\alpha n_\beta
\end{align}
What is the corresponding relation for hypersuface in Euclidean signature manifold.
Last edited by a moderator: