MHB Inequality Challenge: Prove $1/(u-1)+1/(v-1)+1/(x-1)+1/(y-1)>0$

AI Thread Summary
The discussion centers on proving the inequality $\dfrac{1}{u-1}+\dfrac{1}{v-1}+\dfrac{1}{x-1}+\dfrac{1}{y-1}>0$ under the conditions that the real numbers $u, v, x, y$ satisfy $|u|>1$, $|v|>1$, $|x|>1$, $|y|>1$, and the equation $u+v+x+y+uv(x+y)+xy(u+v)=0$. Participants explore various mathematical approaches and transformations to manipulate the given conditions and derive the desired inequality. The conversation emphasizes the significance of the constraints on the absolute values of the variables and their implications for the inequality. The challenge is framed as a problem in algebraic manipulation and inequality proof techniques. The thread highlights the complexity of the problem and the collaborative effort to reach a solution.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Real numbers $u,\,v,\,x,\,y$ satisfy the following conditions:

$|u|>1$, $|v|>1$, $|x|>1$, $|y|>1$, and

$u+v+x+y+uv(x+y)+xy(u+v)=0$

Prove that $\dfrac{1}{u-1}+\dfrac{1}{v-1}+\dfrac{1}{x-1}+\dfrac{1}{y-1}>0$.
 
Mathematics news on Phys.org
anemone said:
Real numbers $u,\,v,\,x,\,y$ satisfy the following conditions:

$|u|>1$, $|v|>1$, $|x|>1$, $|y|>1$, and

$u+v+x+y+uv(x+y)+xy(u+v)=0---(1)$

Prove that $\dfrac{1}{u-1}+\dfrac{1}{v-1}+\dfrac{1}{x-1}+\dfrac{1}{y-1}>0---(2)$.
let :$xy+1=m\neq 0,\,\,uv+1=n\neq 0$
and $x+y=X,\,\, u+v=Y$
then (1) becomes $nX+mY=0---(3)$
we can consider (3) as a line passing through origin $(0,0)=(X,Y)=(x+y,u+v)$
and (2) becomes $\dfrac {2}{x^2-1}+\dfrac{2}{u^2-1}>0$
 
Albert said:
let :$xy+1=m\neq 0,\,\,uv+1=n\neq 0$
and $x+y=X,\,\, u+v=Y$
then (1) becomes $nX+mY=0---(3)$
we can consider (3) as a line passing through origin $(0,0)=(X,Y)=(x+y,u+v)$
and (2) becomes $\dfrac {2}{x^2-1}+\dfrac{2}{u^2-1}>0$

Hi Albert,

I thank you for your constant support in my challenge problems and I appreciate that 100%.

But, your solution to this particular challenge, I am sorry, I just could not follow it...do you mean to say $X=Y=0$, when $X=x+y$ and both $|x|$ and $|y|$ are greater than zero?

Perhaps you have your point there, but the rename of the variables, e.g. the one that uses $X$ to represent $x+y$ is quite confusing to me.
 
anemone said:
Hi Albert,

I thank you for your constant support in my challenge problems and I appreciate that 100%.

But, your solution to this particular challenge, I am sorry, I just could not follow it...do you mean to say $X=Y=0$, when $X=x+y$ and both $|x|$ and $|y|$ are greater than zero?

Perhaps you have your point there, but the rename of the variables, e.g. the one that uses $X$ to represent $x+y$ is quite confusing to me.
the linear expression of a line nX+mY+c=0 ,if passes through the origin then c=0 )
if x=3 then y=-3 ,and X=3+(-3)=0 ,u=5 ,v=-5 ,Y=5+(-5)=0
I mean X=x+y, and Y=u+v
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top