- #1
anemone
Gold Member
MHB
POTW Director
- 3,883
- 115
Real numbers $u,\,v,\,x,\,y$ satisfy the following conditions:
$|u|>1$, $|v|>1$, $|x|>1$, $|y|>1$, and
$u+v+x+y+uv(x+y)+xy(u+v)=0$
Prove that $\dfrac{1}{u-1}+\dfrac{1}{v-1}+\dfrac{1}{x-1}+\dfrac{1}{y-1}>0$.
$|u|>1$, $|v|>1$, $|x|>1$, $|y|>1$, and
$u+v+x+y+uv(x+y)+xy(u+v)=0$
Prove that $\dfrac{1}{u-1}+\dfrac{1}{v-1}+\dfrac{1}{x-1}+\dfrac{1}{y-1}>0$.