MHB Inequality Challenge V: Prove $(a+b)^{a+b} \le (2a)^a(2b)^b$

AI Thread Summary
The inequality challenge requires proving that for any real numbers \(a\) and \(b\) in the interval \((0,1)\), the expression \((a+b)^{a+b} \le (2a)^a(2b)^b\) holds. By dividing both sides by \(2^{a+b}\), the goal shifts to demonstrating that \(\left(\frac{a+b}{2}\right)^{a+b} \leq a^a b^b\). Taking logarithms leads to showing that \(\left(\frac{1}{2}(a+b)\right) \ln\left(\frac{1}{2}(a+b)\right) \leq \frac{1}{2}(a \ln a + b \ln b)\), which follows from the concavity of the function \(f(x) = x \ln x\). The proof confirms the result for all positive \(a\) and \(b\), with equality occurring only when \(a = b\). The discussion highlights a blend of algebraic and analytic approaches to the problem.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that for any real numbers $a$ and $b$ in $(0,\,1)$, that $(a+b)^{a+b}\le (2a)^a(2b)^b$.
 
Mathematics news on Phys.org
You probably want an algebraic proof of this, but as an analyst I naturally think in terms of an analytic proof.
[sp]Dividing both sides by $2^{a+b}$, we need to show that $\Bigl(\dfrac{a+b}2\Bigr)^{a+b} \leqslant a^ab^b$. Then taking the square root of both sides, we need to show that $\bigl(\frac12(a+b)\bigr)^{(a+b)/2} \leqslant \sqrt{a^ab^b}.$ Taking logs of both sides, we need to show that $\bigl(\frac12(a+b)\bigr) \ln\bigl(\frac12(a+b)\bigr) \leqslant \frac12(a\ln a + b\ln b).$ But that is an immediate consequence of the fact the function $f(x) = x\ln x$ is concave, so that $f\bigl(\frac12(a+b)\bigr) \leqslant \frac12\bigl(f(a) + f(b)\bigr).$

To check that $f$ is concave, notice that $f'(x) = \ln x + 1$, $f''(x) = 1/x >0$ for all $x>0$.

This proof shows that the result holds for all positive $a$ and $b$, not just those in the interval $(0,1)$, and that equality holds only when $a=b$.[/sp]
 
Thanks, Opalg for your neat solution in tackling this challenge problem. I'll post the solution (half-algebraic half-analytic) sometime later!:)
 
If we write $a=t(a+b)$ and $b=(1-t)(a+b)$ so that $0<t<1$ and taking both sides of the inequality to the power $\dfrac{1}{a+b}$ and dividing by $a+b$, the inequality is equivalent to

$1\le(2t)^t(2(1-t))^{1-t}$

$\log \dfrac{1}{2}\le t\log t+(1-t)\log(1-t)$

Let $f(t)$ denotes the function on the right then we have $f'(t)=\log t-log(1-t)$, which is negative if $0<t<\dfrac{1}{2}$, equals to 0 at $t=\dfrac{1}{2}$, and positive if $\dfrac{1}{2}<t<1$.

Thus $f(t)$ is minimal at $t=\dfrac{1}{2}$, and since $f\left( \dfrac{1}{2} \right)=\left( \dfrac{1}{2} \right) \log \left( \dfrac{1}{2} \right)+\left( 1-\dfrac{1}{2} \right)\log \left( 1-\dfrac{1}{2} \right)=\log \left(\dfrac{1}{2} \right)$ and hence we proved for the desired inequality.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top