- #1
anemone
Gold Member
MHB
POTW Director
- 3,883
- 115
Prove that for every $x\in (0,\,1)$ the following inequality holds:
$\displaystyle \int_0^1 \sqrt{1+(\cos y)^2} dy>\sqrt{x^2+(\sin x)^2}$
$\displaystyle \int_0^1 \sqrt{1+(\cos y)^2} dy>\sqrt{x^2+(\sin x)^2}$