MHB Inequality of Four Variables: Prove Σab(a^2+b^2+c^2)≤2

AI Thread Summary
The discussion centers on proving the inequality Σab(a^2+b^2+c^2)≤2 for non-negative real numbers a, b, c, and d constrained by the condition a + b + c + d = 2. Participants are encouraged to share their solutions or approaches to the problem. The inequality involves terms that combine products of the variables with their squares, indicating a relationship between their magnitudes. The conversation highlights the challenge of the proof and invites mathematical reasoning and techniques. Engaging with this inequality can enhance understanding of algebraic manipulation and inequalities in mathematics.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a,\,b,\,c$ and $d$ be non-negative real numbers such that $a + b + c + d = 2$.

Prove that $ab(a^2+ b^2 + c^2) + bc(b^2+ c^2+ d^2) + cd(c^2+ d^2+ a^2) + da(d^2+ a^2+ b^2) ≤ 2$.
 
Mathematics news on Phys.org
anemone said:
Let $a,\,b,\,c$ and $d$ be non-negative real numbers such that $a + b + c + d = 2$.

Prove that $ab(a^2+ b^2 + c^2) + bc(b^2+ c^2+ d^2) + cd(c^2+ d^2+ a^2) + da(d^2+ a^2+ b^2) ≤ 2$.

Please post the solution you have ready. (Time) (Wasntme)

You'd think I would've let you slide on this given that you've posted so many problems, but that's just not how I roll. (Bandit)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Replies
1
Views
856
Replies
7
Views
2K
Replies
1
Views
2K
Replies
2
Views
1K
Replies
10
Views
2K
Replies
1
Views
1K
Replies
1
Views
1K
Back
Top