- #1
lfdahl
Gold Member
MHB
- 749
- 0
Find in at least two different ways the smallest $\alpha$, such that
\[\sqrt[3]{x}+\sqrt[3]{y} \leq \alpha \sqrt[3]{x+y}\]
- for all $x,y \in \mathbb{R}_+$
\[\sqrt[3]{x}+\sqrt[3]{y} \leq \alpha \sqrt[3]{x+y}\]
- for all $x,y \in \mathbb{R}_+$