- #1
Saitama
- 4,243
- 93
Problem:
If A is the area and 2s the sum of three sides of a triangle, then:
A)$A\leq \frac{s^2}{3\sqrt{3}}$
B)$A=\frac{s^2}{2}$
C)$A>\frac{s^2}{\sqrt{3}}$
D)None
Attempt:
From heron's formula:
$$A=\sqrt{s(s-a)(s-b)(s-c)}$$
From AM-GM:
$$\frac{s+(s-a)+(s-b)+(s-c)}{4}\geq \left(s(s-a)(s-b)(s-c)\right)^{1/4}$$
$$\Rightarrow A \leq \left(\frac{4s-a-b-c}{4}\right)^2$$
$$\Rightarrow A\leq \left(\frac{2s}{4}\right)^2$$
$$\Rightarrow A\leq \frac{s^2}{4}$$
But the correct answer is A.
Any help is appreciated. Thanks!
If A is the area and 2s the sum of three sides of a triangle, then:
A)$A\leq \frac{s^2}{3\sqrt{3}}$
B)$A=\frac{s^2}{2}$
C)$A>\frac{s^2}{\sqrt{3}}$
D)None
Attempt:
From heron's formula:
$$A=\sqrt{s(s-a)(s-b)(s-c)}$$
From AM-GM:
$$\frac{s+(s-a)+(s-b)+(s-c)}{4}\geq \left(s(s-a)(s-b)(s-c)\right)^{1/4}$$
$$\Rightarrow A \leq \left(\frac{4s-a-b-c}{4}\right)^2$$
$$\Rightarrow A\leq \left(\frac{2s}{4}\right)^2$$
$$\Rightarrow A\leq \frac{s^2}{4}$$
But the correct answer is A.
Any help is appreciated. Thanks!