Inf{frac{n*sqrt(3)} : n in integer}=0

  • MHB
  • Thread starter caffeinemachine
  • Start date
In summary, it is being discussed how to prove that the infimum of the set of fractional parts of numbers of the form $n\sqrt3$, where $n$ is a positive integer, is equal to zero. One possible approach is to use the continued fraction approximants to $\sqrt3$, which are slightly less than and slightly greater than $\sqrt3$, to show that the fractional part of $153\sqrt3$, for example, is very small.
  • #1
caffeinemachine
Gold Member
MHB
816
15
Prove that $\inf \{ \text{ frac}(n \sqrt{3}) : n \in \mathbb{Z}^+ \}$ where $frac(x)$ is the fractional part of $x$
 
Mathematics news on Phys.org
  • #2
caffeinemachine said:
Prove that $\inf \{ \text{ frac}(n \sqrt{3}) : n \in \mathbb{Z}^+ \}$ where $frac(x)$ is the fractional part of $x$
That is not a complete question.
But guessing at what it means, I think this theorem will help.
 
  • #3
The OP misses "= 0," which is present in the thread title.

Equidistribution theorem is much stronger than the fact that $\{\mathop{\mbox{frac}}(n\sqrt{3})\mid n\in\mathbb{Z}^+\}$ is dense in [0, 1], which is sufficient here. This was http://www.mathhelpforum.com/math-help/f9/dynamics-circle-194819.html#post705803 in the old forum, but there are some differences, at least at first glance. Namely, \[\begin{aligned}0&=\inf\{m\cdot1+n\cdot \sqrt{3}\mid m\cdot1+n\cdot\sqrt{3}>0\mbox{ and }m,n\in\mathbb{Z}\}\\&\le\inf\{m\cdot1+n\cdot\sqrt{3}\mid m\cdot1+n\cdot \sqrt{3}>0,m\in\mathbb{Z}^-,n\in\mathbb{Z}^+\}\\& = \inf\{\mathop{\mbox{frac}} (n\sqrt{3}) \mid n\in\mathbb{Z}^+\}\end{aligned}\] but I am not sure about equality right away.
 
  • #4
Plato said:
That is not a complete question.

I am so sorry. The infimum is to be proved to be equal to zero as Makarov has pointed out.

---------- Post added at 11:16 PM ---------- Previous post was at 11:05 PM ----------

Actually this can be done using Pigeon hole principle.

Denote $x_n=\text{frac}(n \sqrt{3})$

Let $n \in \mathbb{Z}^{+}$. Partition the interval $(0,1)$ into $n$ parts, viz, $(0,\frac{1}{n}),(\frac{1}{n},\frac{2}{n}), \ldots, (\frac{n-1}{n},1)$

Consider $n+1$ numbers, $x_1, x_2, \ldots, x_{n+1}$.

By PHP there exist $i,j, i \neq j$ such that $x_i,x_j \in (\frac{k}{n},\frac{k+1}{n})$.

This implies $\text{frac}(|i-j|\sqrt{3}) < \frac{1}{n}$. Thus $x_{|i-j|} < \frac{1}{n}$.

I can't think of any other proof.
 
  • #5
caffeinemachine said:
By PHP there exist $i,j, i \neq j$ such that $x_i,x_j \in (\frac{k}{n},\frac{k+1}{n})$.

This implies $\text{frac}(|i-j|\sqrt{3}) < \frac{1}{n}$.
Not necessarily. Suppose $j > i$, but $\mathop{\mbox{frac}}(j\sqrt{3}) < \mathop{\mbox{frac}}(i\sqrt{3})$. Then \[\mathop{\mbox{frac}}(j\sqrt{3}-i\sqrt{3})=\mathop{\mbox{frac}}(j\sqrt{3})-\mathop{\mbox{frac}}(i\sqrt{3})+1\] so \[1-1/n<\mathop{\mbox{frac}}((j-i)\sqrt{3})<1\]

For example, $\sqrt{3}\approx1.73$ and $2\sqrt{3}\approx 3.46$, so $0 < \mathop{\mbox{frac}}(\sqrt{3})-\mathop{\mbox{frac}}(2\sqrt{3}) < 0.3$. However, $1-0.3<\mathop{\mbox{frac}}(2\sqrt{3}-\sqrt{3})<1$.
 
  • #6
Evgeny.Makarov said:
Not necessarily. Suppose $j > i$, but $\mathop{\mbox{frac}}(j\sqrt{3}) < \mathop{\mbox{frac}}(i\sqrt{3})$. Then \[\mathop{\mbox{frac}}(j\sqrt{3}-i\sqrt{3})=\mathop{\mbox{frac}}(j\sqrt{3})-\mathop{\mbox{frac}}(i\sqrt{3})+1\] so \[1-1/n<\mathop{\mbox{frac}}((j-i)\sqrt{3})<1\]

For example, $\sqrt{3}\approx1.73$ and $2\sqrt{3}\approx 3.46$, so $0 < \mathop{\mbox{frac}}(\sqrt{3})-\mathop{\mbox{frac}}(2\sqrt{3}) < 0.3$. However, $1-0.3<\mathop{\mbox{frac}}(2\sqrt{3}-\sqrt{3})<1$.
Ah! yes. My mistake.
The proof changes a little bit.
We have $x_i, x_j \in (\frac{k}{n},\frac{k+1}{n})$
suppose $x_i>x_j$ then $frac((i-j) \sqrt{3}) < \frac{1}{n} \Rightarrow x_{i-j} < \frac{1}{n}$ EDIT: what if $i<j$ :O
Similarly for $x_j > x_i$
$x_i=x_j$ is not a possibility.
 
  • #7
Well after more fiddling around I can only prove that $inf \{ n \sqrt{3} : n \in \mathbb{Z} \} =0$. I am not able to show that $inf \{ n \sqrt{3} : n \in \mathbb{Z}^+ \} =0$.
I don't even know whether the latter is true.
 
  • #8
Just as a little $\LaTeX$ hint: use the backslash for infinum instead of just inf. You get '$\inf$' versus '$inf$'.
 
  • #9
caffeinemachine said:
I can only prove that $\inf \{ n \sqrt{3} : n \in \mathbb{Z} \} =0$.
Well, this is not true, of course, because this set is not bounded from below... I'll return to this question when I have more time.
 
  • #10
Evgeny.Makarov said:
Well, this is not true, of course, because this set is not bounded from below... I'll return to this question when I have more time.
That was a typo again... sorry:
What I meant was $\inf \{ \text{frac}(n \sqrt{3}): n \in \mathbb{Z} \}=0$
 
  • #11
caffeinemachine said:
Prove that $\inf \{ \text{ frac}(n \sqrt{3}) : n \in \mathbb{Z}^+ \} = 0$ where $\text{frac}(x)$ is the fractional part of $x$
One very constructive way to approach this is to use the continued fraction approximants to $\sqrt3$. These are alternately slightly less than, and slightly greater than, $\sqrt3.$ Take one of the approximants that is less than $\sqrt3$, for example 265/153. You can then check that $153\sqrt3\approx 265.00377...$, whose fractional part is very small.
 
  • #12
Opalg said:
One very constructive way to approach this is to use the continued fraction approximants to $\sqrt3$. These are alternately slightly less than, and slightly greater than, $\sqrt3.$ Take one of the approximants that is less than $\sqrt3$, for example 265/153. You can then check that $153\sqrt3\approx 265.00377...$, whose fractional part is very small.
Thank you Opalg but I am ignorant about continued fractions. Anyways.. thanks for the help.
 

FAQ: Inf{frac{n*sqrt(3)} : n in integer}=0

What does the equation "Inf{frac{n*sqrt(3)} : n in integer}=0" mean?

The equation is asking for the limit of the expression n*sqrt(3) divided by n as n approaches infinity. The answer to this limit is 0.

How do you solve for the limit in the equation "Inf{frac{n*sqrt(3)} : n in integer}=0"?

To solve for the limit, we can use the properties of limits and simplify the expression. Since the numerator and denominator both contain n, we can cancel them out, leaving us with sqrt(3). As n approaches infinity, sqrt(3) remains constant and the limit becomes sqrt(3)/n. Since the denominator is becoming infinitely large, the limit is 0.

What is the significance of the "Inf" in the equation "Inf{frac{n*sqrt(3)} : n in integer}=0"?

The "Inf" stands for infinity and indicates that we are finding the limit of the expression as n approaches infinity.

Can this equation be solved for values other than 0?

No, this equation is specifically asking for the limit as n approaches infinity, which is 0. It cannot be solved for any other value.

How is this equation related to the concept of infinity?

This equation demonstrates the concept of infinity in terms of limits. As n approaches infinity, the expression becomes infinitely large, but the resulting limit is a finite value of 0. This shows that even with infinity, we can still have finite results.

Similar threads

Replies
14
Views
2K
Replies
7
Views
1K
Replies
4
Views
2K
Replies
1
Views
933
Replies
1
Views
1K
Replies
2
Views
2K
Replies
4
Views
616
Back
Top